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COMPLETE AND MODEL-COMPLETE THEORIES
OF MONADIC ALGEBRAS
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0. Introduction. This paper begins an investigation of the elementary
theories of monadie algebras, also known as one-dimensional cylindric
(or polyadic) algebras. Elementary types of Boolean algebras have been
completely described by Tarski [11]. On the other hand, a complete
description in the case of two-dimensional and higher dimensional cylindric
or polyadic algebras is impossible since these theories are undecidable
(cf. Henkin and Tarski [8] and Comer [3]). The equational theories of
monadic algebras were investigated and completely deseribed by Monk [16].
We will show there are 2 elementary types of monadic algebras and in-
vestigate certain natural complete theories.

In a recent paper [9], Macintyre gave a sufficient condition for the
model-completeness of the theory of the structure of sections of a sheat
of rings. This condition is extended in Section 2 to cover structures that
occur in algebraic logic. In Section 3 these results are applied to show
that, for each equational class of monadic algebras, the theory of its
non-trivial members has a model-companion. Axioms are given for these
theories and they are shown to be decidable and w-categorical. We assume
the reader is familiar with [9].

1. Sheaf notation. Lot L be a first-order language. A sheaf of L-struciures
is a triple (X, 8, @), where

(i) X and 8 are topological spaces;

(ii) 2 is a local homeomorphism from S onto X;

(iii) for each we X, ' (®) = 8§, is the universe of an L-structure S,;

(iv) for each mon-logical symbol of I, the natural interpretation
on 8, that is induced by the interpretation on each §,, is continuous.

See [9] for a more preeise formulation of (iv). If X or « is understood
from the context, we drop it from the notation. The L-structures §, are
called the stalks of the sheaf. (X, 8) is a sheaf of models of a theory T if 8,
is a model of T for each e X. We assume that X is a Boolean space through-
out the paper.
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A section of a sheaf (X, 8,7 is a continuous map ¢: X — 8 such

that mo is the identity on X. The subset of [] 8, that consists of all
xreX

sections is denoted by I'(X, §). Condition (iv), in its precise formulation,
implies that I'(X, §), with operations and relations inherited from the

product, is an L-substructure of [] S,.If 4 is an L-structure (topologically,
zeX

a discrete space), (X, 8, n) is a constant A-sheaf if § = X xA, with the
product topology, and = is the projection. It (X, 8) is a constant A-sheaf,
we denote the L-structure I'(X, 8) of sections by I'(X, A).

For a sheat (X, 8) of L-structures we refer to Th {8,: we X} as the
stalk theory and to Th (Irx, S)) as the section theory of the sheaf.

An L-theory 7T’ is positively model-complele it every L-formuls, is equiv-
alent, relative to 7', to a positive existential formula (see [97).

2. Conditions for model-completeness. Consider the following condi-
tions: , v ;
\ (A) X is a Boolean space with no isolated points.

(B) I' is a positively model-complete theory.

(0") L includes two non-logical constants 0 and 1. Also, there exist
two L-terms s(vy, v;) and p(v,, v,) and an atomic formula L (v,), having one
free variable v,, in which 0 and 1 do not occur. The theory 7' includes
the following sentences: '

051, (0, 0) =0, §(0, 1) =1, $(1,0) =1, $(1, 1) =1,
p(,1) =1, p(1,0) = 0, p(0,1) =0, »(0,0) = 0,
(Y20l (2 (@0 1) =20}, (Y00 (200, 0) = 0], (V] (2 > 0y = 0wy = 1),

Condition (C’) is more general than conditions (C) and (D) given
in [9]. The following is a modification of Macintyre’s Theorem 2 :

TunoreM 2.1. For a sheaf of L-structures that satisfies (A), if the stalk
theory satisfies (B), (C') and is complete, then the section theory is model-
-complete.

A proof of this theorem can be constructed from a careful analysis
of the argument in [9]. Conditions (C) and (D) in [9] are used to code up
clopen sets in the rings I'(X, S) by idempotent elements. Condition (Ch
also allows us to do this.

For the atomic formula 2 in (C'), we call ge (X, 8) an Q-element
i I'(X, 8) = L2[0], ie., S, = Q[o(x)] for each e X. By (C"), the Q-ele-
ments of I'(X, S) are precisely the characteristic functions of clopen
subsets of X. Let § and 7 denote the operations on I'X, 8) induced by
the L-terms s and p from condition (C’). The set of all Q-elements with §
as sum and P as product is & Boolean algebra that is isomorphic to the
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Boolean algebra of all clopen subsets of X by using the characteristie
function relationship. We leave the straightforward details te the reader.

The proofs of Theorems 3, 4, and 5 in [9] can also be modified, along
these lines, to give a general result. .

TuroreEM 2.2. If L is an operational language (i.6., there are no non-
-logical relation symbols), Theorem 2.1 remains valid when we drop the assump-
tion that the stalk theory is complete.

TaEorEM 2.3. Suppose L contains only non-logical operation symbols
and T is an L-theory that satisfies (B) and (C'). Let € be the cldss of all
I'X, 8), where 8 is a sheaf of models of T, and X is & Boolean space with
no isolated points. Then Th(¥) is model-complete. The restriction to operational
languages can be dropped if T is a complete theory.

Remark. The connection between condition (C') and Macintyre’s
(0) and (D) can be seen by using v,-v, = v, for 2, v,-v, for p, and v,+v; —
— 40, for ¢ in condition (C'). In the next section we apply these results
to theories of monadic algebras; a situation not covered by Macintyre’s
original theorems. ‘

3. Model-complete theories of monadic algebras. A monadic algebra
is a strueture <4, +, -, —,0,1,¢>, where <4, -, , —,0,1> I8 a
Boolean algebra (BA), and ¢ is a quantifier on this BA, i.e., ¢0 = 0, # < ¢
and ¢(x-cy) = cx-cy. The element @ is closed if cx = ». Denote the class
of all monadic algebras by CA,.

A simple CA, is a non-trivial BA with a quantifier ¢ such that ez = 1
ife #£0. Foreachm = 1,2, ..., let A, be a simple CA, with 2™ elements
and let 4, be a simple, denumerable atomless CA,. For each m < oo,
let V,, denote the variety generated by 4,. In [10] Monk showed that
the non-trivial equational classes of CA;’s form an (o +1)-chain

Vi< Vo< ... < V., = OA,.

The trivial variety of all one-element CA,’s is, of course, covered
by V,. Since the theory of the trivial variety is complete and categorical,
we omit it from additional .consideration.

. For each m < oo, let %, denote the class of all CA,’s I'(X, 8), where
S is a sheaf of models of Th {Am} and X is a Boolean space with no isolated
points.

The following is a consequence of Theorem 2.3:

LemmA 3.1. Th(%,,) is model-complete for each m < oo.

Proof. Condition (C’) holds using -+ for s, - for p, and ¢v, = v, for 2.
Consider (B). It is clear that Th{4,,} is model-complete if m < oco. Th {4}
is model- complete by the same standard argument that works for atomless
BA’s. In any simple CA;, a # b is equivalent to ¢(a@b) = 1, where @
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denotes the symmetric difference. Hence, the negation of a CA, equation
is equivalent to an equation relative to the theory of simple CA,’s. It
follows that Th{4,} is positively model-complete.

Let X, denote the Cantor discontinuum 2. The following result is
immediate from Theorems 1.2 and 1.3 of [5] and from the fact that every
two atomless BA’s are elementarily equivalent.

Lpvwma 3.2, Th(%,) = Th{l"(X,, 4,,)} for each m < oo.

For L-theories T and T* we say that T is a model-companion of T
it T'< T T* is model-complete, and every model of 7' is embeddable
in a model of 7™. This notion was introduced by E. Bers as a refinement
of A. Robinson’s notion of model completion. For the basic facts, see
[1] and [6]. If a model completion of a theory exists, then it is a model-
-companion. If a theory has a model-companion, it is unique. Finally,
let 7' have a model-companion 7™; then 7™ is a model completion if and
only if the class of all models of 7 has the amalgamation property.

Let 7', denote the theory of the non-trivial members of V,, for m < co.
The main result of thiy section is

TrroreM 3.1. Th(%,,) is @ model-companion of T, for each m < 0.
It is a model completion for m = 1, 2 and oo but not otherwise.

Proof. By Lemma 3.1, Th(%,,) is model-complete so, to verify the
. lirst assertion, it remains to show that every non-trivial member 4 of
Vo is embeddable in a model of Th(%,,). In view of the Henkin embedding
theorem [7] or the fact that an algebra is embeddable in an ultraproduct
of its finitely generated subalgebras, it is enough to congider 4 finitely
generated. But every finitely generated CA, is finite. The sectional re-
presentation results [2], restricted to CA,’s, imply that every non-trivial
finite 4 in V,, is isomorphic to a finite product []B,, where each B

i<n .
is embeddable in 4,,. If we use the natural embedding 4, — F'(X,, 4,,),
each B; is embeddable into I'(X,, 4,). Hence [[B, is embeddable

<N
in I'(X,, 4,,)". By the dual sheaf theory [2] for CA,’s, finite products cor-
respond to sums of sheaves, so I'(X,, 4,)" = I'(Y, 8), where Y is homeo-
morphic to a disjoint union of n Cantor spaces (and hence has no isclated

points) and each stalk of S is isomorphic to 4,,. Hence, [] B; is embeddable
i<n

in I'(X,, Ay)e 0, as desired. The second assertion in the theorem follows

from the first and the fact that V,, V, and V,, are the only varieties of

CAs with the amalgamation property.

Remark. Many model-complete theories of n-dimensional eylindrie
algebras (CA,’s) and polyadic algebras (PA,’s) (1 < n < ) can be obtained
from the results in Section 2. But since the amalgamation property fails
for CA,’s and PA’s with 1< n < o (see [4]), the theories of non-trivial
©A,’s and PA,’s do not have a model completion for 1 < n << w.
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4. Properties of Th(%,,). In this section we find axioms for Th(%,,)
and prove that the theory is w-categorical and decidable.
The following properties can be expressed as firgt- order statements:

(1) the axioms for non-trivial CA;’s;
- (2) the BA of all closed elements is atomless;
(3)  (Vw) [@0 # 0 — (v, )( < VoA Oy = cVUAC [0y (— D)) = cvo)].

For m < oo,

(4), 0= [] e(e;®v)), where n =2"—1;
i<j<n
(B (Y0o)]eve = vy Avy £ 0 —(F0y) ... (Fo,-a) (A ev;
<N )
= von A\ 6(0; DY) =v,)], where n =2"—1.

i<j<n

For m < oo, V,, i8 chamctuﬂzed by the CA; axioms plus (4),, (see
Monk [107). Notice that a simple GA satisfies (4),, if and only if it has
at most 2™ elements, and that it satisfies (5),, if and only if it contains
at least 27 elements. Thus, (4),, and (5),, characterize 4, among the simple
COAs. Similarly, (3) holds in a simple CA, if and only if it is atomless.

The following axioms were obtained by lifting the above-given prop-
erties of the stalks:

TaroREM 4.1. (i) Statements (1), (2) and (3) provide axzioms for Th(%).

(il) For m < oo, (1), (2), (4),, and (5),, is a set of awioms for Th(%,,).

Proof. (i) Clearly, (1) and (2) hold in %,. Suppose M'X, 8)e¥,,
e I'(X,8) and ¢ # 0. Then [o]| = {#e X: o(2) # 0,} is a non-empty
clopen 'set. For each xe I|al|, . 1s atomless, so there exist 7 we (X, 8)
with z,(#) < o(z). By a standard “globalization’ argument, there is a
re (X, 8) such that |lof] = [z]| and =(y) < o(y) for all ye |loll. Thus, (3)
holds.

Conversely, suppose A is a model of (1), (2) and (3). By [2],
A ~I'(X, 8), where 8 is a sheaf of simple CA,’s. Since (2) holds, X has
no isolated points. I'(X, §) will belong to %, if each stalk 8, is atomless.
Suppose 0 = se 8,. Choose oe I'(X, 8) so that o(x) = s. We have o # 0,
sinee s # 0. By (3), there is a ve I'(X, §) such that 7< 0, ¢v = ¢, and
c(a-(ﬁr)) — ¢o. Fvaluating these equations at # yields 0,<C7(®)<Ts.
Hence S, is atomless. Thus, every model of (1), (2) and (3) belongs to
%, (up to isomorphism).

The proof of (ii) is similar.

As a corollary to Lemma 3.2 and Theorem 4.1 we have

CoROLLARY 4.1. Th(%,,) is decidable for m < oo.

The connection between reduced products, limit powers, and the
structures I'(X, A) was pointed out by Macintyre in [9]. This connection
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allows us to use results of Waszkiewicz and Weglorz from [12] and [13].
In general, for .any 4, I'(X, 4) is the limit power A¥|Fy, where Fy
denotes the filter on X XX generated by all equivalence relations that
correspond to clopen partitions of X. For the Cantor space X,, 20| Fy
is an infinite atomless BA, so Theorem 1 in [12] implies that I'X,, 4,,)
= (4,,)p, where D is the filter of all cofinite subsets of w. Since 29 is
atomless, Lemma 3.2, together with Corollary 2.2 in [13], gives

TreorEM 4.2. Th(%,,) = Th{l(X,, 4,,)} = Th {4,}p is w-categorical
for m < oo, o -

5. The number of elementary types of monadic algebras. There are 2%
complete theories of CA,’s constructed in this section. ,

Denote the BA of all closed elements of a GA; A by Z(A). An atom
of Z(A4) is a c-atom. For a c-atom y of A, let At, denote the set of all atoms
ae A, a<y.

For an atomic CA, A, introduce a function f“e¢®~'2 defined for
new ~1 by : '

1 if Z4{ye<Z(4): y is a c-atom, [At,| = n} exist,
fAn) = :
0  otherwise.

The following lemma produces the desired examples:

LeMwma 5.1, For each subset X of w ~ 1, there ewists an atomic CA, 4,
such that f42(n) = 1 if and only if ne 3.

~ Prootf. Partition a countable infinite set X into an infinite number
. of pairwise disjoint sets X,, X,,... Partition each X, into an infinite
number of disjoint sets Y, a =1, 2, ..., where | Yl == n. Lot A denote
the complete atomic BA of all subsets of X, and B the BA that con-
sists of all finite and cofinite subsets of X. For a subset X of {1,2,...},
let A denote the Boolean subalgebra of A4 generated by BU{X;Z; ne X}

The following property of A, is useful.

() Lor each ky, Xye Ay if and only if ke 2.

Fora,be 45, writea ~,, b it a@ b is finite. Since there are an infinite
number of X,’s, X;e Ay implies ke X in view of the fact that, for every
we A, a ~,b for some b in the subalgebra of A generated by {X,: ne X}
Thus (%) holds. "~

We introduce a closure operation ¢ on Ay by defining, for Ye 4y,

oY) = U{¥Y,: Y,unY £ 0},

For each atom aeAdy, ¢(a) = Y,,, where a < Y,,, and the center
Z(Ay) of Ayis atomic with {Y,,: n,0e w ~ 1} as the set of atoms. Each *
X, with me 2, is closed, so Z(4;) is the Boolean subalgebra of A, gen-

erated by
{ Yt ny0e0 ~13U{X,: ne 2.
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For each n,

{yeZ(Az): y is a c-atom, |At,| = %} = {I’fm: aew ~1}

Xn = 2:142: yna“

and, for ne X,

Thus, f4*(n) = 1 whenever ne 2. ,
On the other hand, suppose X4rY, = @ exists in A, for some n.
Since ¢Y,, = Y,, for each a, we have

oo = X4z20Y,, = X42Y, =a, ie, acZ(Ay).

X, < a,since, ¥, < a for all a. It follows that a = X,, since no atom

Y, of Z(Ay) is contained in & whenever m = n. Hence, if f4*(n) = 1,
2Ary,  exists in 4y and equals X,. By (%) we have ne2 as desired.

"ne

For each new ~1, let ¢, denote the sentence that says: the sum
of the set of c-atoms that contains exactly n atoms exists.

For each X = w ~'1, let T, denote the set of all sentences derivable
from the axioms for atomic CAs and {g,: ne Z}U{ Ip,: n¢Z}. By
Lemma 5.1, Ay is a model of T5. Since it is clear that no model of T
is a model of 7'y, whenever X == X', we obtain the desired result.

THEOREM 5.2. The theory of atomic CA,’s contains 2° complete extensions.
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