FASC. 2

COMPLETE AND MODEL-COMPLETE THEORIES OF MONADIC ALGEBRAS

BY

STEPHEN D. COMER (NASHVILLE, TENNESSEE)

0. Introduction. This paper begins an investigation of the elementary theories of monadic algebras, also known as one-dimensional cylindric (or polyadic) algebras. Elementary types of Boolean algebras have been completely described by Tarski [11]. On the other hand, a complete description in the case of two-dimensional and higher dimensional cylindric or polyadic algebras is impossible since these theories are undecidable (cf. Henkin and Tarski [8] and Comer [3]). The equational theories of monadic algebras were investigated and completely described by Monk [10]. We will show there are 2° elementary types of monadic algebras and investigate certain natural complete theories.

In a recent paper [9], Macintyre gave a sufficient condition for the model-completeness of the theory of the structure of sections of a sheaf of rings. This condition is extended in Section 2 to cover structures that occur in algebraic logic. In Section 3 these results are applied to show that, for each equational class of monadic algebras, the theory of its non-trivial members has a model-companion. Axioms are given for these theories and they are shown to be decidable and ω -categorical. We assume the reader is familiar with [9].

- **1. Sheaf notation.** Let L be a first-order language. A sheaf of L-structures is a triple (X, S, π) , where
 - (i) X and S are topological spaces;
 - (ii) π is a local homeomorphism from S onto X;
 - (iii) for each $x \in X$, $\pi^{-1}(x) = S_x$ is the universe of an L-structure S_x ;
- (iv) for each non-logical symbol of L, the natural interpretation on S, that is induced by the interpretation on each S_x , is continuous.

See [9] for a more precise formulation of (iv). If X or π is understood from the context, we drop it from the notation. The L-structures S_x are called the *stalks* of the sheaf. (X, S) is a *sheaf of models of a theory* T if S_x is a model of T for each $x \in X$. We assume that X is a Boolean space throughout the paper.

A section of a sheaf (X, S, π) is a continuous map $\sigma \colon X \to S$ such that $\pi \sigma$ is the identity on X. The subset of $\prod_{x \in X} S_x$ that consists of all sections is denoted by $\Gamma(X, S)$. Condition (iv), in its precise formulation, implies that $\Gamma(X, S)$, with operations and relations inherited from the product, is an L-substructure of $\prod_{x \in X} S_x$. If A is an L-structure (topologically, a discrete space), (X, S, π) is a constant A-sheaf if $S = X \times A$, with the product topology, and π is the projection. If (X, S) is a constant A-sheaf, we denote the L-structure $\Gamma(X, S)$ of sections by $\Gamma(X, A)$.

For a sheaf (X, S) of L-structures we refer to Th $\{S_x : x \in X\}$ as the stalk theory and to Th $(\Gamma(X, S))$ as the section theory of the sheaf.

An L-theory T is positively model-complete if every L-formula is equivalent, relative to T, to a positive existential formula (see [9]).

- 2. Conditions for model-completeness. Consider the following conditions:
 - (A) X is a Boolean space with no isolated points.
 - (B) T is a positively model-complete theory.
- (C') L includes two non-logical constants 0 and 1. Also, there exist two L-terms $s(v_0, v_1)$ and $p(v_0, v_1)$ and an atomic formula $\Omega(v_0)$, having one free variable v_0 , in which 0 and 1 do not occur. The theory T includes the following sentences:

$$\begin{split} 0 &\neq 1, \quad s(0\,,0) = 0\,, \quad s(0\,,1) = 1\,, \quad s(1\,,0) = 1\,, \quad s(1\,,1) = 1\,, \\ p\,(1\,,1) &= 1\,, \quad p\,(1\,,0) = 0\,, \quad p\,(0\,,1) = 0\,, \quad p\,(0\,,0) = 0\,, \\ \big(\forall v_0\big) \big(p\,(v_0\,,1) = v_0\big), \quad \big(\forall v_0\big) \big(p\,(v_0\,,0) = 0\big), \quad \big(\forall v_0\big) \big(\mathcal{Q} \leftrightarrow v_0 = 0 \lor v_0 = 1\big). \end{split}$$

Condition (C') is more general than conditions (C) and (D) given in [9]. The following is a modification of Macintyre's Theorem 2:

THEOREM 2.1. For a sheaf of L-structures that satisfies (A), if the stalk theory satisfies (B), (C') and is complete, then the section theory is model-complete.

A proof of this theorem can be constructed from a careful analysis of the argument in [9]. Conditions (C) and (D) in [9] are used to code up clopen sets in the rings $\Gamma(X,S)$ by idempotent elements. Condition (C') also allows us to do this.

For the atomic formula Ω in (C'), we call $\sigma \in \Gamma(X, S)$ an Ω -element if $\Gamma(X, S) \models \Omega[\sigma]$, i.e., $S_x \models \Omega[\sigma(x)]$ for each $x \in X$. By (C'), the Ω -elements of $\Gamma(X, S)$ are precisely the characteristic functions of clopen subsets of X. Let \overline{s} and \overline{p} denote the operations on $\Gamma(X, S)$ induced by the L-terms s and p from condition (C'). The set of all Ω -elements with \overline{s} as sum and \overline{p} as product is a Boolean algebra that is isomorphic to the

Boolean algebra of all clopen subsets of X by using the characteristic function relationship. We leave the straightforward details to the reader.

The proofs of Theorems 3, 4, and 5 in [9] can also be modified, along these lines, to give a general result.

THEOREM 2.2. If L is an operational language (i.e., there are no non-logical relation symbols), Theorem 2.1 remains valid when we drop the assumption that the stalk theory is complete.

THEOREM 2.3. Suppose L contains only non-logical operation symbols and T is an L-theory that satisfies (B) and (C'). Let $\mathscr C$ be the class of all $\Gamma(X,S)$, where S is a sheaf of models of T, and X is a Boolean space with no isolated points. Then $\operatorname{Th}(\mathscr C)$ is model-complete. The restriction to operational languages can be dropped if T is a complete theory.

Remark. The connection between condition (C') and Macintyre's (C) and (D) can be seen by using $v_0 \cdot v_0 = v_0$ for Ω , $v_0 \cdot v_1$ for p, and $v_0 + v_1 - v_0 \cdot v_1$ for s in condition (C'). In the next section we apply these results to theories of monadic algebras; a situation not covered by Macintyre's original theorems.

3. Model-complete theories of monadic algebras. A monadic algebra is a structure $\langle A, +, \cdot, -, 0, 1, c \rangle$, where $\langle A, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra (BA), and c is a quantifier on this BA, i.e., c0 = 0, $x \leq cx$ and $c(x \cdot cy) = cx \cdot cy$. The element x is closed if cx = x. Denote the class of all monadic algebras by CA_1 .

A simple CA_1 is a non-trivial BA with a quantifier c such that cx=1 if $x \neq 0$. For each $m=1,2,\ldots$, let A_m be a simple CA_1 with 2^m elements and let A_{∞} be a simple, denumerable atomless CA_1 . For each $m \leq \infty$, let V_m denote the variety generated by A_m . In [10] Monk showed that the non-trivial equational classes of CA_1 's form an $(\omega+1)$ -chain

$$V_1 < V_2 < ... < V_{\infty} = CA_1$$
.

The trivial variety of all one-element CA_1 's is, of course, covered by V_1 . Since the theory of the trivial variety is complete and categorical, we omit it from additional consideration.

For each $m \leq \infty$, let \mathscr{C}_m denote the class of all CA₁'s $\Gamma(X, S)$, where S is a sheaf of models of Th $\{A_m\}$ and X is a Boolean space with no isolated points.

The following is a consequence of Theorem 2.3:

LEMMA 3.1. Th (\mathscr{C}_m) is model-complete for each $m \leq \infty$.

Proof. Condition (C') holds using + for s, for p, and $cv_0 = v_0$ for Ω . Consider (B). It is clear that Th $\{A_m\}$ is model-complete if $m < \infty$. Th $\{A_\infty\}$ is model-complete by the same standard argument that works for atomless BA's. In any simple CA₁, $a \neq b$ is equivalent to $c(a \oplus b) = 1$, where \oplus

denotes the symmetric difference. Hence, the negation of a CA_1 equation is equivalent to an equation relative to the theory of simple CA_1 's. It follows that $Th\{A_m\}$ is positively model-complete.

Let X_0 denote the Cantor discontinuum 2^{ω} . The following result is immediate from Theorems 1.2 and 1.3 of [5] and from the fact that every two atomless BA's are elementarily equivalent.

Lemma 3.2. $\operatorname{Th}(\mathscr{C}_m) = \operatorname{Th}\{\varGamma(X_0,A_m)\}\ \text{for each } m\leqslant\infty.$

For L-theories T and T^* we say that T^* is a model-companion of T if $T \subseteq T^*$, T^* is model-complete, and every model of T is embeddable in a model of T^* . This notion was introduced by E. Bers as a refinement of A. Robinson's notion of model completion. For the basic facts, see [1] and [6]. If a model completion of a theory exists, then it is a model-companion. If a theory has a model-companion, it is unique. Finally, let T have a model-companion T^* ; then T^* is a model completion if and only if the class of all models of T has the amalgamation property.

Let T_m denote the theory of the non-trivial members of V_m for $m \leq \infty$. The main result of this section is

THEOREM 3.1. Th(\mathscr{C}_m) is a model-companion of T_m for each $m \leq \infty$. It is a model completion for m = 1, 2 and ∞ but not otherwise.

Proof. By Lemma 3.1, $Th(\mathscr{C}_m)$ is model-complete so, to verify the first assertion, it remains to show that every non-trivial member A of V_m is embeddable in a model of $\operatorname{Th}(\mathscr{C}_m)$. In view of the Henkin embedding theorem [7] or the fact that an algebra is embeddable in an ultraproduct of its finitely generated subalgebras, it is enough to consider A finitely generated. But every finitely generated CA₁ is finite. The sectional representation results [2], restricted to CA1's, imply that every non-trivial finite A in V_m is isomorphic to a finite product $\prod B_i$, where each B_i is embeddable in A_m . If we use the natural embedding $A_m \to \Gamma(X_0, A_m)$, each B_i is embeddable into $\Gamma(X_0, A_m)$. Hence $\prod_{i < m} B_i$ is embeddable in $\Gamma(X_0, A_m)^n$. By the dual sheaf theory [2] for CA_1 's, finite products correspond to sums of sheaves, so $\Gamma(X_0, A_m)^n \cong \Gamma(Y, S)$, where Y is homeomorphic to a disjoint union of n Cantor spaces (and hence has no isolated points) and each stalk of S is isomorphic to A_m . Hence, $\prod B_i$ is embeddable in $\Gamma(X_0, A_m) \in C_m$ as desired. The second assertion in the theorem follows from the first and the fact that V_1, V_2 and V_{∞} are the only varieties of CA₁'s with the amalgamation property.

Remark. Many model-complete theories of n-dimensional cylindric algebras (CA_n's) and polyadic algebras (PA_n's) ($1 < n < \omega$) can be obtained from the results in Section 2. But since the amalgamation property fails for CA_n's and PA_n's with $1 < n < \omega$ (see [4]), the theories of non-trivial CA_n's and PA_n's do not have a model completion for $1 < n < \omega$.

4. Properties of Th(\mathscr{C}_m). In this section we find axioms for Th(\mathscr{C}_m) and prove that the theory is ω -categorical and decidable.

The following properties can be expressed as first-order statements:

- (1) the axioms for non-trivial CA₁'s;
- (2) the BA of all closed elements is atomless;
- (3) $(\forall v_0)[v_0 \neq 0 \rightarrow (\exists v_1)(v_1 \leqslant v_0 \land cv_1 = cv_0 \land c(v_0 \cdot (\cdot v_1)) = cv_0)].$ For $m < \infty$,

$$(4)_m \qquad \qquad 0 = \prod_{i < j < n} c(v_i \oplus v_j), \quad \text{where } n = 2^m - 1;$$

$$\begin{split} (5)_m & \quad \big(\forall v_0 \big) \big[cv_0 = v_0 \wedge v_0 \neq 0 \rightarrow \big(\exists \ v_1 \big) \dots \big(\exists \ v_{n-1} \big) \big(\bigwedge_{i < n} cv_i \\ & = v_0 \wedge \bigwedge_{i < j < n} c(v_i \oplus v_j) = v_0 \big) \big], \quad \text{where} \ n = 2^m - 1. \end{split}$$

For $m < \infty$, V_m is characterized by the CA_1 axioms plus $(4)_m$ (see Monk [10]). Notice that a simple CA_1 satisfies $(4)_m$ if and only if it has at most 2^m elements, and that it satisfies $(5)_m$ if and only if it contains at least 2^m elements. Thus, $(4)_m$ and $(5)_m$ characterize A_m among the simple CA_1 's. Similarly, (3) holds in a simple CA_1 if and only if it is atomless.

The following axioms were obtained by lifting the above-given properties of the stalks:

THEOREM 4.1. (i) Statements (1), (2) and (3) provide axioms for $\operatorname{Th}(\mathscr{C}_{\infty})$. (ii) For $m < \infty$, (1), (2), (4)_m and (5)_m is a set of axioms for $\operatorname{Th}(\mathscr{C}_m)$.

Proof. (i) Clearly, (1) and (2) hold in \mathscr{C}_{∞} . Suppose $\Gamma(X, S) \in \mathscr{C}_{\infty}$, $\sigma \in \Gamma(X, S)$ and $\sigma \neq 0$. Then $\|\sigma\| = \{x \in X : \sigma(x) \neq 0_x\}$ is a non-empty clopen set. For each $x \in \|\sigma\|$, S_x is atomless, so there exist $\tau_x \in \Gamma(X, S)$ with $\tau_x(x) < \sigma(x)$. By a standard "globalization" argument, there is a $\tau \in \Gamma(X, S)$ such that $\|\sigma\| = \|\tau\|$ and $\tau(y) < \sigma(y)$ for all $y \in \|\sigma\|$. Thus, (3) holds.

Conversely, suppose A is a model of (1), (2) and (3). By [2], $A \cong \Gamma(X, S)$, where S is a sheaf of simple CA_1 's. Since (2) holds, X has no isolated points. $\Gamma(X, S)$ will belong to \mathscr{C}_{∞} if each stalk S_x is atomless. Suppose $0 \neq s \in S_x$. Choose $\sigma \in \Gamma(X, S)$ so that $\sigma(x) = s$. We have $\sigma \neq 0$, since $s \neq 0$. By (3), there is a $\tau \in \Gamma(X, S)$ such that $\tau \leqslant \sigma$, $c\tau = c\sigma$, and $c(\sigma \cdot (-\tau)) = c\sigma$. Evaluating these equations at x yields $0_x < \tau(x) < s$. Hence S_x is atomless. Thus, every model of (1), (2) and (3) belongs to \mathscr{C}_{∞} (up to isomorphism).

The proof of (ii) is similar.

As a corollary to Lemma 3.2 and Theorem 4.1 we have

COROLLARY 4.1. Th(\mathscr{C}_m) is decidable for $m \leqslant \infty$.

The connection between reduced products, limit powers, and the structures $\Gamma(X,A)$ was pointed out by Macintyre in [9]. This connection

allows us to use results of Waszkiewicz and Węglorz from [12] and [13]. In general, for any A, $\Gamma(X,A)$ is the limit power $A^X|F_X$, where F_X denotes the filter on $X\times X$ generated by all equivalence relations that correspond to clopen partitions of X. For the Cantor space X_0 , $2^{X_0}|F_{X_0}$ is an infinite atomless BA, so Theorem 1 in [12] implies that $\Gamma(X_0,A_m)\equiv (A_m)_D^{\omega}$, where D is the filter of all cofinite subsets of ω . Since 2_D^{ω} is atomless, Lemma 3.2, together with Corollary 2.2 in [13], gives

THEOREM 4.2. Th $(\mathscr{C}_m)=\operatorname{Th}\{\varGamma(X_0,\,A_m)\}=\operatorname{Th}\{A_m\}_D^\omega$ is ω -categorical for $m\leqslant\infty.$

5. The number of elementary types of monadic algebras. There are 2^{ω} complete theories of CA_1 's constructed in this section.

Denote the BA of all closed elements of a CA_1A by Z(A). An atom of Z(A) is a *c-atom*. For a *c*-atom y of A, let At_y denote the set of all atoms $a \in A$, $a \leq y$.

For an atomic CA₁ A, introduce a function $f^{A} e^{\omega \sim 1}$ 2 defined for $n \in \omega \sim 1$ by

$$f^A(n) = \begin{cases} 1 & \text{if } \Sigma^A \{ y \in Z(A) \colon y \text{ is a c-atom, } |\text{At}_y| = n \} \text{ exist,} \\ 0 & \text{otherwise.} \end{cases}$$

The following lemma produces the desired examples:

LEMMA 5.1. For each subset Σ of $\omega \sim 1$, there exists an atomic $CA_1 A_{\Sigma}$ such that $f^{A_{\Sigma}}(n) = 1$ if and only if $n \in \Sigma$.

Proof. Partition a countable infinite set X into an infinite number of pairwise disjoint sets X_1, X_2, \ldots Partition each X_n into an infinite number of disjoint sets Y_{na} , $\alpha = 1, 2, \ldots$, where $|Y_{na}| = n$. Let A denote the complete atomic BA of all subsets of X, and B the BA that consists of all finite and cofinite subsets of X. For a subset Σ of $\{1, 2, \ldots\}$, let A_{Σ} denote the Boolean subalgebra of A generated by $B \cup \{X_n : n \in \Sigma\}$.

The following property of A_{Σ} is useful.

(*) For each k, $X_k \in A_{\Sigma}$ if and only if $k \in \Sigma$.

For $a, b \in A_{\Sigma}$, write $a \sim_{\omega} b$ if $a \oplus b$ is finite. Since there are an infinite number of X_i 's, $X_k \in A_{\Sigma}$ implies $k \in \Sigma$ in view of the fact that, for every $a \in A$, $a \sim_{\omega} b$ for some b in the subalgebra of A generated by $\{X_n \colon n \in \Sigma\}$. Thus (*) holds.

We introduce a closure operation c on A_{Σ} by defining, for $Y \in A_{\Sigma}$,

$$c(Y) = \bigcup \{Y_{na} \colon Y_{na} \cap Y \neq 0\}.$$

For each atom $a \in A_{\Sigma}$, $c(a) = Y_{na}$, where $a \leq Y_{na}$, and the center $Z(A_{\Sigma})$ of A_{Σ} is atomic with $\{Y_{na} \colon n, a \in \omega \sim 1\}$ as the set of atoms. Each X_n , with $n \in \Sigma$, is closed, so $Z(A_{\Sigma})$ is the Boolean subalgebra of A_{Σ} generated by

$$\{X_{na}\colon\, n\,,\, a\,\epsilon\,\omega\, \sim 1\} \cup \{X_n\colon\, n\,\epsilon\,\varSigma\}\,.$$

For each n,

$$\{y \in Z(A_{\Sigma}): y \text{ is a } c\text{-atom}, |At_y| = n\} = \{Y_{na}: a \in \omega \sim 1\}$$

and, for $n \in \Sigma$,

$$X_n = \Sigma_a^{A_{\Sigma}} Y_{na}.$$

Thus, $f^{A_{\Sigma}}(n) = 1$ whenever $n \in \Sigma$.

On the other hand, suppose $\Sigma^{A_{\Sigma}}Y_{na}=a$ exists in A_{Σ} for some n. Since $cY_{na}=Y_{na}$ for each a, we have

$$ea = \Sigma^{A_{\Sigma}} e Y_{na} = \Sigma^{A_{\Sigma}} Y_{na} = a, \quad \text{i.e., } a \in Z(A_{\Sigma}).$$

 $X_n \subseteq a$, since $Y_{na} \subseteq a$ for all a. It follows that $a = X_n$, since no atom $Y_{m\beta}$ of $Z(A_{\Sigma})$ is contained in a whenever $m \neq n$. Hence, if $f^{A_{\Sigma}}(n) = 1$, $\sum_{a}^{A_{\Sigma}} Y_{na}$ exists in A_{Σ} and equals X_n . By (*) we have $n \in \Sigma$ as desired.

For each $n \in \omega \sim 1$, let φ_n denote the sentence that says: the sum of the set of c-atoms that contains exactly n atoms exists.

For each $\Sigma \subseteq \omega \sim 1$, let T_{Σ} denote the set of all sentences derivable from the axioms for atomic CA_1 's and $\{\varphi_n\colon n\in\Sigma\}\cup\{\neg\varphi_n\colon n\notin\Sigma\}$. By Lemma 5.1, A_{Σ} is a model of T_{Σ} . Since it is clear that no model of T_{Σ} is a model of T_{Σ} , we obtain the desired result.

THEOREM 5.2. The theory of atomic CA_1 's contains 2^{ω} complete extensions.

REFERENCES

- [1] J. Barwise and A. Robinson, Completing theories by forcing, Annals of Mathematical Logic 2 (1970), p. 119-142.
- [2] S. Comer, A sheaf-theoretic duality theory for cylindric algebras, Transactions of the American Mathematical Society 169 (1972), p. 75-87.
- [3] Finite inseparability of some theories of cylindrification algebras, Journal of Symbolic Logic 34 (1969), p. 171-176.
- [4] Classes without the amalgamation property, Pacific Journal of Mathematics 28 (1969), p. 309-318.
- [5] Elementary properties of structures of sections, Boletín de la Sociedad Matemática Mexicana (to appear).
- [6] P. Eklof and G. Sabbagh, Model-completions and modules, Annals of Mathematical Logic 2 (1971), p. 251-295.
- [7] L. Henkin, Some interconnections between modern algebra and mathematical logic, Transactions of the American Mathematical Society 74 (1953), p. 410-427.
- [8] and A. Tarski, Cylindric algebras. Lattice theory, Proceedings of the Symposium in Pure Mathematics 2 (1961), p. 83-113.
- [9] A. Macintyre, Model-completeness for sheaves of structures, Fundamenta Mathematicae 81 (1973), p. 73-89.
- [10] D. Monk, On equational classes of algebraic versions of logic. I, Mathematica Scandinavica 27 (1970), p. 53-71.

- [11] A. Tarski, Arithmetical classes and types of Boolean algebras, Bulletin of the American Mathematical Society 55 (1949), p. 64.
- [12] J. Waszkiewicz and B. Weglorz, Some models of theories of reduced powers, Bulletin de l'Académie Polonaise de Sciences, Série des sciences mathématiques, astronomiques et physiques, 16 (1968), p. 683-685.
- [13] On ω_0 -categoricity of powers, ibidem 17 (1969), p. 195-199.

Reçu par la Rédaction le 24. 9. 1974