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Let 4 be an algebra that contains a constant O and a binary operation - among
its fundamental operations. Elements x, ye A are called disjoint if x-y=0. A
satisfies the countable chain condition (c.c.c) if it contains no uncountable set
of pairwise disjoint nonzero elements. Consider the following facts:

1. (Classical) A free Boolean algebra satisfies c.c.c.

2. (Abian [1]) A free algebra in the ring variety generated by a finite field
satisfies c.c.c.

These examples suggest the question “Does c.c.c. hold in every free algebra
of a quasi-primal variety?” Before this question can be answered we must know
what the c.c.c. means in a universal algebra. In Section 2 we propose a general
algebraic condition, called the countable separability condition (c.s.c.), and show
that, in many situations, it is equivalent to c.c.c. Using c.s.c. we give an affirmative
answer to the posed question (Theorem 2.9).

In Section 1 the free algebras in quasi-primal varieties are determined. The
main tool for their description is the second duality result for quasi-primal
varieties due to Keimel and Werner [2]. For unexplained notation and terminology
see [2].

Section 1. Free Algebras in Quasi-Primal Varieties

Suppose ¢ is a finite set of weakly independent quasi-primal algebras. The
variety ¥ generated by o is called a quasi-primal variety. Without loss of
generality we may assume that whenever two algebras in " intersect the inter-
section is a subalgebra of both. The following construction was given as the
second representation result by Keimel and Werner in [2].

Consider # = | ] #" as a (finite) discrete topological space. For Re#" con-
sider the set Hom(R, )= {¢@: ¢ is a homomorphism from R into some 4. #"}
with the topology ¢ inherited from the product space 2% With this topology
Hom(R, ), denoted Hom (R, '), is a Boolean space with a standard subbasis
given by the collection of all sets that have the form K(r; a)= {pe Hom(R,%):
@(r)=a} where reR and ae %"
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Let A=Hom,(R, A) for each AeS(H#"). A is a closed subspace of Hom (R, 7).
The collection of all isomorphisms «: A - B where A, Be S(#¢") form an inverse
semigroup H. Fach «: A—B in H induces a homeomorphism &: A—B by
4(@)=oo@ where peA. This action of H makes Hom,(R, %) into a Boolean
H-space.

Now suppose X is a Boolean space, for each 4e S(%") there is a closed sub-
space A of X, and for each o: A—B in H there is a homeomorphism %: 4— B
such that & f=ap for all «, fe H (i.e, X is a Boolean H-space). Let Adm(X, )
denote the set of all continuous functions f: X — 5 such that

(i) f(A)= A4 for all AeS(H),

(i) f(ax)=of(x) for every xeA and isomorphism o: A—B in H.

Theorem 1.1 (Keimel, Werner [2]). For every Re?, R= Adm(Hom (R, '), #).

In fact the correspondence between R and Hom (R, ¢} gives rise to a duality
between ¥~ and Boolean H-spaces.

The next lemma leads to the characterization of F,(m), the free algebras
in ¥ with m generators. Let {A4;: i<n} be the set of maximal members of %
under inclusion.

Lemma 1.2. (a) For Re?; Hom (R, #")= | ] 4;.

(b) If R is ¥ -free with a set I of generators, /Iimszf (a product space ).
Proof. (a) Obvious since A,=Hom, (R, 4,). N

(b) Since R is free on I the restriction map p: A,— Al given by p(p)=0|l
for pe A, is a bijection between A; and AL Since A has a subbasis that consist
of sets with the form N*={geAl: g(x)=a} for xel and ae A4,, it follows that
p is continuous. It remains to show that

B={reR: pK(r; a) is open in Af for all ae 4,}

is a subalgebra of R that contains the set of generators L It is clear that I=B
so assume 7, ...,neB and e K(f(r,...,n); @) for some operation f and aeA4,.

k
Since () p K(r;; $(r) is an open neighborhood of p(¢)=lI it suffices to see
j=1

J

k
that ) p K(r; o) = p K(f(, ..., 1); a). But this follows since R is free on I:

j=1
for gep K(r;, ¢(r;)) for all j=1,...,k the unique g*: R— 4, that extends g
belongs to K(r; ¢(r)) for all j=1, ..., k and hence

g (0, i) =@ (1), g ) =flo®), ..., o)) = f(ry, ... n)=a,
Le., gep K(f(r,...,n)) as desired.
Remark. For any set I and AeS(#"), A is a closed subspace of | ] Al. Each oe H
acts on | ) A} in the obvious way (for a: B—C in H, a: B'—C' is given by
a{g)=wcg). For a free algebra R of ¥~ with a set I of generators it can be seen
that Hom (R, #") is isomorphic to | ] A] as Boolean H-spaces by comparing
the actions of H on the two spaces. i<#
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For an infinite cardinal m the product space 2™ is the Stone space of a free
Boolean algebra with m generators. These spaces are called Cantor m-spaces.
It is easy to show that if S is a finite set with more than one element and mzN,,
then §m=2m, Using this fact, Theorem 1.1 and Lemma 1.2 the free quasi-primal

op

algebras are easy to describe.

Theorem 1.3. Suppose ¥~ is a quasi-primal variety generated by a set A" of finite
algebras with n maximal members and suppose F is a free algebra of v with
m generators. Then
(1) if mzR,, F=Adm(X, A) where X is a union of n Cantor m-spaces.
(i) if m<N,, F2Adm(X, X)) where X is a discrete space with at most | A"
elements.

Theorem 1.3 has many special cases. We list a few.

Corollary 1.4. Suppose F is a free algebra with m generators in a quasi-primal
variety . Then

(a) if m=¥,, F= Adm (2%, 2",

(b) if m=¥,, and v is generated by a single quasi-primal algebra A, F=
Adm(2™ A). If, in addition, A is semi-primal (i.e., every acH extends to the
identity), then F is a filtered Boolean power of A and if A is primal (i.e., no
nontrivial subalgebras in addition to being semi-primal), then F is the Boolean
power A[B] where B is a free Boolean algebra with m generators.

It follows from 1.3(ii) that a free algebra in ¥~ with a finite number of generators
is finite and hence a direct product of the algebras in . The exact number of
copies of each factor depends on the structure of the poset S(#") as well as the
number of isomorphisms between members of S(4).

We illustrate how to use 1.3 with m<¥, by describing F,(m) for the variety
#, of all rings with unit that satisfy x?"=x (p is a prime). Let GF. denote the
Galois field with p" elements. Then ¥, is a semi-primal variety generated by
GF,. Let F/(m) be the free algebra in ¥, with m generators. By a proof similar
to that of 1.3, for all m,

F/(m)={f: (GE)"—>GE: fis continuous and f(GF™) < GF, for all i<e}.

Assume m<¥,.Then F/(m)= [| B, where B,=GF, is to be determined. Partition
geGF

GE'"=GF"U(GE'~ GF™u---U(GE"~ GE" ,) and observe that fe Adm(GE", GE)

< f(GF"~GF",)<GF, for all i<e. Thus, B,=GF, for each geGF"~GF" .

Counting the number of times each GF, is a factor we have

Corollary 1.5. For m<R,, F/(m)~ [[GF" where n,=p" and for 1<iZe,
ni:(pl)m_(pl—-l)m. i=1
It is easy to extend the above to the ring variety generated by GE, where

a unit is not required. The presence of the one element subalgebra of GF, means
that GF; occurs as a factor only p™—1 times.
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Section 2. Countable Chain Condition

All algebras considered in this section are assumed to have a constant 0 among
the fundamental operations. Let Si(A4) denote the class of subdirectly irreducible
factors of 4 and, for a class 4~ of algebras, let Si(4)= U Si(A).

Aedk
For an algebra 4 a subset D< A is called separable if for every x, yeD, x=y

and every pe Hom(4, Si(A)) either ¢(x)=0 or ¢(y)=0. In other words, in every
subdirectly irreducible factor of 4 at most one member of D has a nonzero value.
We say that an algebra A satisfies the countable separability condition (c.s.c.) if
there are no uncountable separable sets of nonzero elements of A4.

The c.s.c. is intended to be a universal algebraic variant of the countable
chain condition. We will see to what extent this is true after a useful character-
ization of separability is given.

For a algebra A the support of ae 4 is the set Supp(a)= {¢eHom(4, Si(A4)):
¢(a)=0}. The following is obvious.

Lemma 2.1. For D<= A, D is separable iff every pair of distinct elements in D have
disjoint supports.

To begin the comparison of c.c.c. and c.s.c. we first notice that under fairly
weak conditions c.c.c. implies c.s.c.

Lemma 2.2. If Si(A)=x-0=0=0-x, then A satisfies c.s.c. whenever it satis-
fies c.c.c.

Proof. By 2.1 it suffices to show that a pair of elements in A with disjoint supports
must be disjoint. Suppose Supp(a)nSupp(b)=2 and a-b=0. There exist
@eHom(A, B) for some BeSi(4) with ¢(a) - @(b)=¢@(a - b)£0. By the assumption
on Si(A4), ¢(a), p(b)=0. Whence @eSupp(a)nSupp(b), a contradiction. Thus,
a-b=0 whenever a, b have disjoint supports.

The next result shows that c.c.c. and c.s.c. are equivalent in the situations
that motivated this paper.

Theorem 2.3, If Si(A)ex-y=0<x=0vy=0, then A satisfies c.s.c. if and only
if it satisfies c.c.c.

Proof. The “if” part follows by 2.2. For the converse, it suffices to see that pair-
wise disjoint elements a, be A have disjoint supports. For any ¢ Hom(4, Si(A4)),
0=q(a- b)=¢(a) - p(b); so the condition on Si(4) implies that either ¢ ¢Supp(a)
or p¢Supp(b) as desired.

Corollary 2.4. The c.c.c. and c.s.c. are equivalent for any Boolean algebra and
Jfor any member of the ring variety generated by «a finite field. ( Ring multiplication
is the binary operation in the latter examples.)

There are interesting situations not covered by 2.3. For example, cylindric
and polyadic algebras with nonzero dimension. In these and other situations
there is a meet semilattice reduct of the algebras so it is natural to investigate
the equivalence of c.c.c. and c.s.c. for such algebras. Of course, 2.2 shows that
c.c.c. implies c.s.c. In general the converse fails.
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Remark 2.5. Every subdirectly irreducible algebra satisfies ¢.s.c. In fact, a maximal
separable set of nonzero elements in a subdirectly irreducible algebra has one
element. Thus, any simple monadic ‘algebra with an uncountable number of
atoms will satisfy c.s.c. but not c.c.c.

The next result establishes a partial converse to 2.2 for a class of varieties
that includes all quasi-primal ones. As a preliminary, let x A y denote the binary
operation that is defined on an algebra 4 by

e x if y=*0
AV iry=o.

By induction x Ay can be extended to a n-ary function A x;=(..(xqA X)) A
... AXx,_;) on A that has the property i<n

(1) A= A x;=0. if and only if x,=0 for some i<n.

i<n

A class o of similar algebras is called integral if there is a polynomial in
the fundamental operations that represents the function x Ay simultaneously
on each of the algebras in 7

Theorem 2.6. Suppose A" is a finite set of finite algebras, A is integral, and
Si(¥)S IS(H") where ¥ =HSP(X"). Furthermore, assume that the reduct (A, -, 0)
is a meet semilattice with O whenever Ae¥. Then c.c.c. and c.s.c. are equivalent -
iny.

Proof. Tt is enough to assume Ae?¥ satisfies c.s.c. and show that c.c.c. holds.
Suppose D is an infinite set of pairwise disjoint nonzero elements in A. For
" @eHom(A4,8i(A4)) let D,={yeD: ¢(y)*0}. Bach D, is finite. (For if x,yeD,
x+yand ¢(x}=0p(y), then 0=x -y implies 0=¢(x) - @y)=@(x) by a semilattice
property. Thus, ¢ can send at most one element of D to each nonzero element
of @(A) which is finite) Moreover, {|D,|: @eHom(A4,Si(4))} is bounded by
max {|B|: BeSi(A4)}. Because of this, for each xe D we can choose D,, e {D,,: ¥(x) #0}
that has maximal size. The collection of finite sets {D,, : xe D} forms a partially
ordered set P under =. Choose a D'=D such that {D,: xeD'} is the set of
maximal elements of P (and no proper subset of D’ will yield all maximal ele-
ments). From D= | | D, it follows that |[D'{=|D|. Maximality in P gives

xeD’

(2) x,yeD’, x=y implies D, 2D, .

For each xeD’ let n=|D, | and order D, ={a;: i<n}. Then let X= A «;.
By (1), for each xe D', i<n

(3) for each pe Hom(A4,Si(4)), @(X)*0 iff ¢(y)=+0 for all yeD,_.

In particular, (3) implies ¢ (X)=+0; so X=+0. Now suppose x,yeD’, x%y and
¥ (x)=#0 for some e Hom(4,Si(4)). By (3), D, .= D,; so D, =D, since D, was

chosen with maximal size. Thus, by (2), there exist ze D, ~ D, Hence y(z)=0
and (3) yields (y)=0. It follows that for x, ye D', X and 7 have disjoint supports.
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(Hence, X4y also.) Thus {X: xeD’} is a separable set of nonzero elements of A.
Assuming c.s.c. holds in A, |D|=|D’| =¥, as desired.

Corollary 2.7. If ¥ is a quasi-primal variety and the reduct (4, -, 0) of every Ae?”
is a meet semilattice with 0, then c.c.c. and c.s.c. are equivalent in ¥

Proof. Si(¥") is integral since x A y=d(x, d(x, y, 0), 0) where d(x, y, z) is the ternary
discriminator

if y=z

X
d(x,y,Z):{Z i pz

We now consider the question raised in the introduction and answer it
affirmatively for c.s.c.

A topological space X has the countable chain condition (c.c.c.) if every
collection of pairwise disjoint nonempty open subsets of X is countable. An
obvious cardinality argument gives the following.

Lemma 28. If a space Y is a countable union of closed subspaces X,;(i<w) and
each X, has the c.c.c., then Y has the c.c.c.

Theorem 2.9. Every free algebra F in a quasi-primal variety ¥~ satisfies ¢.s.c.

Proof. We may assume F has m = N, generators. Using " =Si(#") in Theorem 1.3(i),
F~Adm(X, ) where X =Hom_(F, %) is a finite union of Cantor m-spaces.
Thus, it follows from 2.8 that the space X has the c.c.c. since the spaces 2™ have
c.c.c. Now suppose {4,: i <n} are the maximal members of Si(#") and re F. Then

Supp(n=1) ) K(r;a)
i<n O%FacAd;
is a clopen subset of X. By Lemma 2.1, the c.s.c. for F follows from the c.c.c.
for X.

As a corollary to 2.9 and 2.4 it follows that the c.c.c. holds in every free algebra
in the ring variety generated by a finite field. As a corollary to 2.9 and 2.7 the
c.c.c. holds in every free algebra of a quasi-primal variety of cylindric algebras.
Many other special cases can be enunciated by consulting a list of quasi-primal
varieties (c.f., Werner [3]).
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