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THE DECISION PROBLEM FOR CERTAIN NILPOTENT CLOSED VARIETIES

by Sterren D. Comur in Charleston, South Carolina (U.S.A.)

1. Preliminaries

The nilpotent closure operation J, on the lattice of varieties was introduced by
L 1. Mer’~rc in [5]. This note contains some observations about how this operation
effects the decidability of a variety. We show that if ¥ o and ¥ are independent
varieties the nilpotent closure of ¥°y + %7, has an inseparable first-order theory. At
the other extreme we show the nilpotent -closure of a variety of projection algebras
has a decidable first-order theory. g

The author wishes to thank B. M. Scumin for bringing MEL’NIK’s work to his at-
tention.

We consider algebras 9 = (4, FX(i ¢ I)) with a fixed similarity type v = (niziel)
where n, 2 1 for all 4 el (ie., no O-ary operations are allowed).

Several special varieties will appear below. Let 4" denote the variety defined by
the set of equations

Fowge o) = Filyy, .oy i, jel}.
A is called the (v)-nilpotent variety; its members are clearly “constant’ algebras. For
each function o from I into the positive integers such that o, £ n; for all ¢ we lot 2,
denote the variety defined by the equations

{(FPiay, ..., 2,) = Tpiyit e},

The members of 2, are called (0)-projection algebras. Obviously A" and £ are atoms
in the lattice L, of all varieties of 7-algebras. The varieties are categorical in every
power and hence decidable varieties (i.e., have a decidable first-order theory).

The operation J . is defined for a variety % by J ‘,V'(“// ) =7 4+ A, the sum of ¥~
and A" in the lattice L,. Since J (¥7) = ¥" whenever ¥~ 2 A7, we assume ¥ R N
This operation, called the nilpotent closure, was introduced in [6]. The following lemma
is from that paper.

Lemma 1. (MeUNIK) Suppose # is a variely and V" R N There exist a unary
term t (in the language of V) such that ¥ has a equational bases {tx) = @} w2 where
2 s the set of all equations that hold in both ¥~ and N (i.e., equations &, = i, that hold
in V" and neither t, nor t, are variables). ' i

Suppose ¥ and B are algebras with similarity type 7. 8 is called an N-extension
of U (see [5)) if (i) U is isomorphic to the algebra Q(B) = U{F3(b,,...,0,):iel and
by, ..., by € B}; and (ii) 2(B) is a retract of B (i.e.; there exist an endomorphism of B
that is the identity on £(9)). v

Suppose X is a family of mutually disjoint sets indexed by 4 such that a € X, for
all @ € 4. We form an extension ULX] of the algebra U on the universe A[X] = U{X,:
aed}. For each iel, we define F¥X\(x, ;.. . u,) = F¥ay, ..., a,) where z; e X,
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fori =1,...,n A X]is called a inflation of . For semigroups this notion was intro-
duced in [1], p. 98. The following characterizes the algebras in J ,(¥7).

Proposition 2. The following are equivalent for any variety ¥":

1) Bed (7);
(2) B is an N -extension of some A e?";
(8) B 48 isomorphic to an inflation of some A ey .

Proof. See [5] for the equivalence of (1) and (2). (2) implies (3). Let % = (D)
and, for each a € Q(B), let X, = {b € B: ¢p(b) = a} where ¢ is the retract of % onto
Q(B). (3) implies (1). Suppose B = A[X]. The map ¢: B — U defined by ply) = a
if ye X, is a retract onto Ae?". § = (4 x A) Iy is a congruence relation on B
whose quotient B/0 belongs to A 0 nker(p) = Iy so B belongs to ¥~ + A"

As an immediate consequence of Lemma 1 and Proposition 2 we obtain:
Corollary 3. An equation holds in J ,(¥7) iff it is derivable from 2.

Two varieties ¥, and ¥, in L, are called independent if there exist a binary term
b(x, y) in the language of algebras of type v such that b(x, y) = = holds in ¥7, and
b(z, y) = y holds in ¥7;. This notion was introduced by Fosrter [4].

2. An Undeecidability Result

Recall that a first-order theory is inseparable if there is no recursive set separating
the logically valid sentences of the language from the sentences that fail in some model
of the theory. This is a strong form of undecidability; it implies the theory is hered-
itarily undecidable (i.e., every subtheory is also undecidable). The main technique
for showing that a theory T is inseparable involves interpreting into T a theory
already known to be inseparable. For a detailed description of this method see [7]
or [6].

Theorem 4. Suppose ¥y and ¥, are independent varielies and ¥~ = ¥y + ¥~ does
not contain A. Then J p(¥7) is inseparable (and hence hereditarily undecidable).

Proof. Suppose b(x, y) is the binary term that shows 7, and ¥7; are independent
and suppose f(z) it the unary term (from Lemma 1) such that #(z) = & holds in 7~
but hot in A. We show J ,(¥") is inseparable by interpreting the theory DI, of two
disjoint equivalence relations into it. This theory is known to be inseparable (cf.,
[2] Theorem 3 or [6], Theorem 16.56).

The interpretation is given by the formulas
D) := Vylt(y) = v >y = ),
E(x, y) i = Va(blz, ®) = blz, y)),
Fw, y) 1= Va(b(, z) = by, 2)).
By Theorem 1 in [2] (or Proposition 15.17 in [6]) it suffices to verify
(*) for every finite model (4, R, S) of DE, there exist & in J ,(¥)
{ such that (4, R, S) = (D%, B®, F¥).

'9
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Given (4, R, 8)let {R,, .. ., R,_,} denote the R-equivalence classes and {80, oo, Sy}
denote the S-equivalence classes of A. Choose B, e?" ; and a one-one function f
(¢ = 0, 1) such that f,: m — B, and f,: » — B,. Since R and § are disjoint equivalence
relations on A, 8; A R; contains at most one element for each (¢, j) e m x n. Thus,
fo X f1 sets up a natural bijection between 4 and the subset

A= {{fol), h(3): Sin B + 0}

of By x B;. By adding elements to each element in By x B\ A we obtain an infla-
tion B = (By X By) [X] of By x By that satisfies (*).

Remarks. 1. If ¥y and ¥"; have arbitrarily large finite models then % may be
chosen to be finite. In this case the first-order theory of J +(¥7) is finitely inseparable.
2. It follows from Corollary 3 that J (¥") has a decidable equational theory whenever
¥ does. In section 4 we mention independent varieties ¥ o and ¥7; such that
V' =77 + ¥ is decidable. By Theorem 4 J ,(¥7) is undecidable. Thus J » does not
preserve first-order decidability.

3. A Decidability Result

We show that J (¥7) is a decidable variety whenever ¥ is a variety of projection
algebras. The proof uses the idea of m-elementary subsystem, 9 =<, B, introduced
by Dawa Scorr (cf. [6], pp. 352£f.) and closely resembles the proof that the theory
of one equivalence relation is decidable.

Suppose &, is a variety of projection algebras. By Proposition 2 every member of
J 4(Z,) is an inflation A[X] of an algebra 9 in Z,. For each m < w, we say that Y[ X]
in J (P,) is m-basic if
1) X £ m + 1 for every a e 4;

(i) for every n > 0, {a € A: |X,| = n}| < m.
Theorem 5. J (2,) is a decidable varicty (i.c., has a decidable first-order theory).

Proof. A straightforward counting argument shows that every m-basic Y[X] in
mim + 1) (m + 2)
2
isomorphism types of m-basic algebras in J #(Z?;). Thus it can be decided whether or
not a sentence holds in every m-basic algebra. Hence it suffices to show that every
B[Z] in J (F,) contains an m-basic, m-elementary subsystem (see [6], p. 352). This

is done in two steps.

(1) It |Zy] 2 m + 1, choose Y, < Z, with be Y, and |Y,] = m + 1; otherwise let
Yy = Z,. This yields a B[Y] =<, B[Z] where [ Yy <m + 1 for all be B.

(2) For each positive integer k, let B, = {beB: |Yy = k}. The collection
{Biilke=1,...,m + 1} partitions B. For each k, set A, = By if |By| £ m and let 4,
be a fixed subset of B, with [Ax] = m in case | B > m. Then 4 = Uldr: kb =1,...,
m + 1} becomes a subalgebra of . Defining X as the restriction of ¥ to 4 we obtain
an m-basic algebra A[X] and W[ X] <,, B[]

The desired conclusion follows from (1) and (2).

J {(P,) has at most

elements and there are at most (m + 1)m+ 1
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4, Applications to Semigroups

We look at what theorems 4 and 5 mean in the case of groupoids. For algebras
where x -y is the fundamental operation there are only two possibilities for & : the
variety ¥ of all left zero semigroups (defined by xy = ) and the variety Z of all
right zero semigroups (defined by xy = y). The variety 4" (defined by xy = uv) con-
sist of all constant semigroups. The variety £+ = J (&) (respectively, #* = J (%))
is defined by the laws (xu) (vy) = xy and zy = xz (vespectively, (vu) (vy) = 2y and
Xy = 2).

Both #+ and #* are decidable by Theorem 5. The varietal product & @ # (intro-
duced by Wanrsr Tavror [8]) is the variety of all rectangular bands (defined by
(wae) {vy) = ay and 2? = z). It is an immediate consequence of [3] that & & # is a
decidable variety. Theorem 4 shows that the nilpotent closure J (& ® %) is hered-
itarily undecidable even though every proper subvariety is decidable.

The operation J , is an endomorphism of L, so J (£ @ #) = L+ + %+, however,
it cannot be a varietal product of £+ and Z#*+ (for then it would be decidable).
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