THE DECISION PROBLEM FOR CERTAIN NILPOTENT CLOSED VARIETIES by Stephen D. Comer in Charleston, South Carolina (U.S.A.) #### 1. Preliminaries The nilpotent closure operation $J_{\mathscr{N}}$ on the lattice of varieties was introduced by I. I. Mel'nik in [5]. This note contains some observations about how this operation effects the decidability of a variety. We show that if \mathscr{V}_0 and \mathscr{V}_1 are independent varieties the nilpotent closure of $\mathscr{V}_0 + \mathscr{V}_1$ has an inseparable first-order theory. At the other extreme we show the nilpotent closure of a variety of projection algebras has a decidable first-order theory. The author wishes to thank B. M. Schein for bringing Mel'nik's work to his attention. We consider algebras $\mathfrak{A} = (A, F_i^{\mathfrak{A}}(i \in I))$ with a fixed similarity type $\tau = (n_i : i \in I)$ where $n_i \geq 1$ for all $i \in I$ (i.e., no 0-ary operations are allowed). Several special varieties will appear below. Let $\mathcal N$ denote the variety defined by the set of equations $$\{F_i(x_1,\ldots,x_n)=F_j(y_1,\ldots,y_m): i,j\in I\}.$$ \mathscr{N} is called the (τ) -nilpotent variety; its members are clearly "constant" algebras. For each function σ from I into the positive integers such that $\sigma_i \leq n_i$ for all i we let \mathscr{P}_{σ} denote the variety defined by the equations $$\left\{F_i(x_1,\ldots,x_n)=x_{\sigma(i)}\colon i\in I\right\}.$$ The members of \mathscr{P}_{σ} are called (σ) -projection algebras. Obviously \mathscr{N} and \mathscr{P}_{σ} are atoms in the lattice L_{τ} of all varieties of τ -algebras. The varieties are categorical in every power and hence decidable varieties (i.e., have a decidable first-order theory). The operation $J_{\mathscr{N}}$ is defined for a variety \mathscr{V} by $J_{\mathscr{N}}(\mathscr{V}) = \mathscr{V} + \mathscr{N}$, the sum of \mathscr{V} and \mathscr{N} in the lattice L_{τ} . Since $J_{\mathscr{N}}(\mathscr{V}) = \mathscr{V}$ whenever $\mathscr{V} \supseteq \mathscr{N}$, we assume $\mathscr{V} \supseteq \mathscr{N}$. This operation, called the *nilpotent closure*, was introduced in [5]. The following lemma is from that paper. Lemma 1. (Mel'nik) Suppose $\mathscr V$ is a variety and $\mathscr V \not\supseteq \mathscr N$. There exist a unary term t (in the language of $\mathscr V$) such that $\mathscr V$ has a equational bases $\{t(x)=x\}\cup \Sigma_{\mathscr V}^{\mathscr N}$ where $\Sigma_{\mathscr V}^{\mathscr N}$ is the set of all equations that hold in both $\mathscr V$ and $\mathscr N$ (i.e., equations $t_1=t_2$ that hold in $\mathscr V$ and neither t_1 nor t_2 are variables). Suppose \mathfrak{A} and \mathfrak{B} are algebras with similarity type τ . \mathfrak{B} is called an *N-extension* of \mathfrak{A} (see [5]) if (i) \mathfrak{A} is isomorphic to the algebra $\Omega(\mathfrak{B}) = \bigcup \{F_i^{\mathfrak{B}}(b_1, \ldots, b_n) : i \in I \text{ and } b_1, \ldots, b_n \in B\}$; and (ii) $\Omega(\mathfrak{B})$ is a retract of \mathfrak{B} (i.e., there exist an endomorphism of \mathfrak{B} that is the identity on $\Omega(\mathfrak{B})$). Suppose X is a family of mutually disjoint sets indexed by A such that $a \in X_a$ for all $a \in A$. We form an extension $\mathfrak{A}[X]$ of the algebra \mathfrak{A} on the universe $A[X] = \bigcup \{X_a : a \in A\}$. For each $i \in I$, we define $F_i^{\mathfrak{A}[X]}(x_1, \ldots, x_n) = F_i^{\mathfrak{A}}(a_1, \ldots, a_n)$ where $x_i \in X_{a_i}$ for $i=1,\ldots,n$. $\mathfrak{A}[X]$ is called a *inflation* of \mathfrak{A} . For semigroups this notion was introduced in [1], p. 98. The following characterizes the algebras in $J_{\mathscr{N}}(\mathscr{V})$. Proposition 2. The following are equivalent for any variety \mathscr{V} : - (1) $\mathfrak{B} \in J_{\mathscr{N}}(\mathscr{V});$ - (2) \mathfrak{B} is an \mathscr{N} -extension of some $\mathfrak{A} \in \mathscr{V}$; - (3) \mathfrak{B} is isomorphic to an inflation of some $\mathfrak{A} \in \mathscr{V}$. Proof. See [5] for the equivalence of (1) and (2). (2) implies (3). Let $\mathfrak{A} = \mathcal{Q}(\mathfrak{B})$ and, for each $a \in \mathcal{Q}(\mathfrak{B})$, let $X_a = \{b \in B : \varphi(b) = a\}$ where φ is the retract of \mathfrak{B} onto $\mathcal{Q}(\mathfrak{B})$. (3) implies (1). Suppose $\mathfrak{B} = A[X]$. The map $\varphi \colon \mathfrak{B} \to \mathfrak{A}$ defined by $\varphi(y) = a$ if $y \in X_a$ is a retract onto $\mathfrak{A} \in \mathscr{V}$. $\theta = (A \times A) \cup I_{\mathfrak{B}}$ is a congruence relation on \mathfrak{B} whose quotient \mathfrak{B}/θ belongs to \mathscr{N} . $\theta \cap \ker(\varphi) = I_{\mathfrak{B}}$ so \mathfrak{B} belongs to $\mathscr{V} + \mathscr{N}$. As an immediate consequence of Lemma 1 and Proposition 2 we obtain: Corollary 3. An equation holds in $J_{\mathscr{N}}(\mathscr{V})$ iff it is derivable from $\Sigma_{\mathscr{X}}^{\mathscr{N}}$. Two varieties \mathscr{V}_0 and \mathscr{V}_1 in L_{τ} are called *independent* if there exist a binary term b(x, y) in the language of algebras of type τ such that b(x, y) = x holds in \mathscr{V}_0 and b(x, y) = y holds in \mathscr{V}_1 . This notion was introduced by Foster [4]. ## 2. An Undecidability Result Recall that a first-order theory is *inseparable* if there is no recursive set separating the logically valid sentences of the language from the sentences that fail in some model of the theory. This is a strong form of undecidability; it implies the theory is hereditarily undecidable (i.e., every subtheory is also undecidable). The main technique for showing that a theory T is inseparable involves interpreting into T a theory already known to be inseparable. For a detailed description of this method see [7] or [6]. Theorem 4. Suppose \mathscr{V}_0 and \mathscr{V}_1 are independent varieties and $\mathscr{V}=\mathscr{V}_0+\mathscr{V}_1$ does not contain \mathscr{N} . Then $J_{\mathscr{N}}(\mathscr{V})$ is inseparable (and hence hereditarily undecidable). Proof. Suppose b(x, y) is the binary term that shows \mathscr{V}_0 and \mathscr{V}_1 are independent and suppose t(x) is the unary term (from Lemma 1) such that t(x) = x holds in \mathscr{V} but not in \mathscr{N} . We show $J_{\mathscr{N}}(\mathscr{V})$ is inseparable by interpreting the theory DE_2 of two disjoint equivalence relations into it. This theory is known to be inseparable (cf., [2] Theorem 3 or [6], Theorem 16.56). The interpretation is given by the formulas $$D(x) := \forall y (t(y) = x \to y = x),$$ $$E(x, y) := \forall z (b(z, x) = b(z, y)),$$ $$F(x, y) := \forall z (b(x, z) = b(y, z)).$$ By Theorem 1 in [2] (or Proposition 15.17 in [6]) it suffices to verify (*) $\begin{cases} \text{for every finite model } (A, R, S) \text{ of DE}_2 \text{ there exist } \mathfrak{B} \text{ in } J_{\mathscr{N}}(\mathscr{V}) \\ \text{such that } (A, R, S) \cong (D^{\mathfrak{B}}, E^{\mathfrak{B}}, F^{\mathfrak{B}}). \end{cases}$ Given (A, R, S) let $\{R_0, \ldots, R_{n-1}\}$ denote the R-equivalence classes and $\{S_0, \ldots, S_{m-1}\}$ denote the S-equivalence classes of A. Choose $\mathfrak{B}_i \in \mathscr{V}_i$ and a one-one function f_i (i=0,1) such that $f_0 \colon m \to \mathfrak{B}_0$ and $f_1 \colon n \to \mathfrak{B}_1$. Since R and S are disjoint equivalence relations on A, $S_i \cap R_j$ contains at most one element for each $(i,j) \in m \times n$. Thus, $f_0 \times f_1$ sets up a natural bijection between A and the subset $$\bar{A} = \{ (f_0(i), f_1(j)) \colon S_i \cap R_j \neq 0 \}$$ of $B_0 \times B_1$. By adding elements to each element in $B_0 \times B_1 \setminus \bar{A}$ we obtain an inflation $\mathfrak{B} = (\mathfrak{B}_0 \times \mathfrak{B}_1)[X]$ of $\mathfrak{B}_0 \times \mathfrak{B}_1$ that satisfies (*). Remarks. 1. If \mathscr{V}_0 and \mathscr{V}_1 have arbitrarily large finite models then \mathfrak{B} may be chosen to be finite. In this case the first-order theory of $J_{\mathscr{N}}(\mathscr{V})$ is finitely inseparable. 2. It follows from Corollary 3 that $J_{\mathscr{N}}(\mathscr{V})$ has a decidable equational theory whenever \mathscr{V} does. In section 4 we mention independent varieties \mathscr{V}_0 and \mathscr{V}_1 such that $\mathscr{V} = \mathscr{V}_0 + \mathscr{V}_1$ is decidable. By Theorem 4 $J_{\mathscr{N}}(\mathscr{V})$ is undecidable. Thus $J_{\mathscr{N}}$ does not preserve first-order decidability. ## 3. A Decidability Result We show that $J_{\mathscr{N}}(\mathscr{V})$ is a decidable variety whenever \mathscr{V} is a variety of projection algebras. The proof uses the idea of m-elementary subsystem, $\mathfrak{A} \leq_m \mathfrak{B}$, introduced by Dana Scott (cf. [6], pp. 352ff.) and closely resembles the proof that the theory of one equivalence relation is decidable. Suppose \mathscr{P}_{σ} is a variety of projection algebras. By Proposition 2 every member of $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$ is an inflation $\mathfrak{A}[X]$ of an algebra \mathfrak{A} in \mathscr{P}_{σ} . For each $m<\omega$, we say that $\mathfrak{A}[X]$ in $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$ is m-basic if - (i) $|X_a| \leq m + 1$ for every $a \in A$; - (ii) for every n > 0, $|\{a \in A : |X_a| = n\}| \le m$. Theorem 5. $J_{\mathcal{N}}(\mathscr{P}_{\sigma})$ is a decidable variety (i.e., has a decidable first-order theory). Proof. A straightforward counting argument shows that every m-basic $\mathfrak{A}[X]$ in $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$ has at most $\frac{m(m+1)\ (m+2)}{2}$ elements and there are at most $(m+1)^{m+1}-1$ isomorphism types of m-basic algebras in $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$. Thus it can be decided whether or not a sentence holds in every m-basic algebra. Hence it suffices to show that every $\mathfrak{B}[Z]$ in $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$ contains an m-basic, m-elementary subsystem (see [6], p. 352). This is done in two steps. - (1) If $|Z_b| \ge m+1$, choose $Y_b \subseteq Z_b$ with $b \in Y_b$ and $|Y_b| = m+1$; otherwise let $Y_b = Z_b$. This yields a $\mathfrak{B}[Y] \le m \mathfrak{B}[Z]$ where $|Y_b| \le m+1$ for all $b \in B$. - (2) For each positive integer k, let $B_k = \{b \in B : |Y_b| = k\}$. The collection $\{B_k : k = 1, \ldots, m+1\}$ partitions B. For each k, set $A_k = B_k$ if $|B_k| \leq m$ and let A_k be a fixed subset of B_k with $|A_k| = m$ in case $|B_k| > m$. Then $A = \bigcup \{A_k : k = 1, \ldots, m+1\}$ becomes a subalgebra of \mathfrak{B} . Defining X as the restriction of Y to A we obtain an m-basic algebra $\mathfrak{A}[X]$ and $\mathfrak{A}[X] \leq_m \mathfrak{B}[Y]$. The desired conclusion follows from (1) and (2). ## 4. Applications to Semigroups We look at what theorems 4 and 5 mean in the case of groupoids. For algebras where $x \cdot y$ is the fundamental operation there are only two possibilities for \mathscr{P}_{σ} : the variety \mathscr{L} of all left zero semigroups (defined by xy = x) and the variety \mathscr{R} of all right zero semigroups (defined by xy = y). The variety \mathscr{N} (defined by xy = uv) consist of all constant semigroups. The variety $\mathscr{L}^+ = J_{\mathscr{N}}(\mathscr{L})$ (respectively, $\mathscr{R}^+ = J_{\mathscr{N}}(\mathscr{R})$) is defined by the laws (xu) (vy) = xy and xy = xz (respectively, (xu) (vy) = xy and xy = zy). Both \mathcal{L}^+ and \mathcal{R}^+ are decidable by Theorem 5. The varietal product $\mathcal{L}\otimes\mathcal{R}$ (introduced by Walter Taylor [8]) is the variety of all rectangular bands (defined by (xu)(vy)=xy and $x^2=x$). It is an immediate consequence of [3] that $\mathcal{L}\otimes\mathcal{R}$ is a decidable variety. Theorem 4 shows that the nilpotent closure $J_{\mathcal{N}}(\mathcal{L}\otimes\mathcal{R})$ is hereditarily undecidable even though every proper subvariety is decidable. The operation $J_{\mathscr{N}}$ is an endomorphism of L_{τ} so $J_{\mathscr{N}}(\mathscr{L} \otimes \mathscr{R}) = \mathscr{L}^{+} + \mathscr{R}^{+}$; however, it cannot be a varietal product of \mathscr{L}^{+} and \mathscr{R}^{+} (for then it would be decidable). #### References - [1] CLIFFORD, A. H., and G. B. Preston, The algebraic theory of semigroups, Vol. I. Amer. Math. Soc. 1961. - [2] Comer, S. D., Finite inseparability of some theories of cylindrification algebras. J. Symbolic Logic 34 (1969), 171-176. - [3] Feferman, S., and R. L. Vaught, The first order properties of products of algebraic systems. Fund. Math. 47 (1959), 57-103. - [4] Foster, A. L., The identities of and unique subdirect factorization within classes of universal algebras. Proc. AMS 7 (1956), 1011–1013. - [5] Mel'nik, I. I., Nilpotent shifts on manifolds. Mat. Zametki 14 (1973), 703-712. Translated: Math. Notes 14 (1973), 962-966. - [6] Monk, J. D., Mathematical Logic. Springer-Verlag, Berlin-Heidelberg-New York 1976. - [7] RABIN, M. O., A simple method for undecidability proofs and some applications. In: Logic, Methodology and Philos. Sci. (Y. BAR HILLEL, editor). North-Holland Publ. Comp., Amsterdam 1965, pp. 58-68. - 181 TAYLOR, W., Characterizating Mal'cev condition, Algebra Univ. 3 (1973), 351-397. (Eingegangen am 20. März 1980)