# THE DECISION PROBLEM FOR CERTAIN NILPOTENT CLOSED VARIETIES

by Stephen D. Comer in Charleston, South Carolina (U.S.A.)

#### 1. Preliminaries

The nilpotent closure operation  $J_{\mathscr{N}}$  on the lattice of varieties was introduced by I. I. Mel'nik in [5]. This note contains some observations about how this operation effects the decidability of a variety. We show that if  $\mathscr{V}_0$  and  $\mathscr{V}_1$  are independent varieties the nilpotent closure of  $\mathscr{V}_0 + \mathscr{V}_1$  has an inseparable first-order theory. At the other extreme we show the nilpotent closure of a variety of projection algebras has a decidable first-order theory.

The author wishes to thank B. M. Schein for bringing Mel'nik's work to his attention.

We consider algebras  $\mathfrak{A} = (A, F_i^{\mathfrak{A}}(i \in I))$  with a fixed similarity type  $\tau = (n_i : i \in I)$  where  $n_i \geq 1$  for all  $i \in I$  (i.e., no 0-ary operations are allowed).

Several special varieties will appear below. Let  $\mathcal N$  denote the variety defined by the set of equations

$$\{F_i(x_1,\ldots,x_n)=F_j(y_1,\ldots,y_m): i,j\in I\}.$$

 $\mathscr{N}$  is called the  $(\tau)$ -nilpotent variety; its members are clearly "constant" algebras. For each function  $\sigma$  from I into the positive integers such that  $\sigma_i \leq n_i$  for all i we let  $\mathscr{P}_{\sigma}$  denote the variety defined by the equations

$$\left\{F_i(x_1,\ldots,x_n)=x_{\sigma(i)}\colon i\in I\right\}.$$

The members of  $\mathscr{P}_{\sigma}$  are called  $(\sigma)$ -projection algebras. Obviously  $\mathscr{N}$  and  $\mathscr{P}_{\sigma}$  are atoms in the lattice  $L_{\tau}$  of all varieties of  $\tau$ -algebras. The varieties are categorical in every power and hence decidable varieties (i.e., have a decidable first-order theory).

The operation  $J_{\mathscr{N}}$  is defined for a variety  $\mathscr{V}$  by  $J_{\mathscr{N}}(\mathscr{V}) = \mathscr{V} + \mathscr{N}$ , the sum of  $\mathscr{V}$  and  $\mathscr{N}$  in the lattice  $L_{\tau}$ . Since  $J_{\mathscr{N}}(\mathscr{V}) = \mathscr{V}$  whenever  $\mathscr{V} \supseteq \mathscr{N}$ , we assume  $\mathscr{V} \supseteq \mathscr{N}$ . This operation, called the *nilpotent closure*, was introduced in [5]. The following lemma is from that paper.

Lemma 1. (Mel'nik) Suppose  $\mathscr V$  is a variety and  $\mathscr V \not\supseteq \mathscr N$ . There exist a unary term t (in the language of  $\mathscr V$ ) such that  $\mathscr V$  has a equational bases  $\{t(x)=x\}\cup \Sigma_{\mathscr V}^{\mathscr N}$  where  $\Sigma_{\mathscr V}^{\mathscr N}$  is the set of all equations that hold in both  $\mathscr V$  and  $\mathscr N$  (i.e., equations  $t_1=t_2$  that hold in  $\mathscr V$  and neither  $t_1$  nor  $t_2$  are variables).

Suppose  $\mathfrak{A}$  and  $\mathfrak{B}$  are algebras with similarity type  $\tau$ .  $\mathfrak{B}$  is called an *N-extension* of  $\mathfrak{A}$  (see [5]) if (i)  $\mathfrak{A}$  is isomorphic to the algebra  $\Omega(\mathfrak{B}) = \bigcup \{F_i^{\mathfrak{B}}(b_1, \ldots, b_n) : i \in I \text{ and } b_1, \ldots, b_n \in B\}$ ; and (ii)  $\Omega(\mathfrak{B})$  is a retract of  $\mathfrak{B}$  (i.e., there exist an endomorphism of  $\mathfrak{B}$  that is the identity on  $\Omega(\mathfrak{B})$ ).

Suppose X is a family of mutually disjoint sets indexed by A such that  $a \in X_a$  for all  $a \in A$ . We form an extension  $\mathfrak{A}[X]$  of the algebra  $\mathfrak{A}$  on the universe  $A[X] = \bigcup \{X_a : a \in A\}$ . For each  $i \in I$ , we define  $F_i^{\mathfrak{A}[X]}(x_1, \ldots, x_n) = F_i^{\mathfrak{A}}(a_1, \ldots, a_n)$  where  $x_i \in X_{a_i}$ 

for  $i=1,\ldots,n$ .  $\mathfrak{A}[X]$  is called a *inflation* of  $\mathfrak{A}$ . For semigroups this notion was introduced in [1], p. 98. The following characterizes the algebras in  $J_{\mathscr{N}}(\mathscr{V})$ .

Proposition 2. The following are equivalent for any variety  $\mathscr{V}$ :

- (1)  $\mathfrak{B} \in J_{\mathscr{N}}(\mathscr{V});$
- (2)  $\mathfrak{B}$  is an  $\mathscr{N}$ -extension of some  $\mathfrak{A} \in \mathscr{V}$ ;
- (3)  $\mathfrak{B}$  is isomorphic to an inflation of some  $\mathfrak{A} \in \mathscr{V}$ .

Proof. See [5] for the equivalence of (1) and (2). (2) implies (3). Let  $\mathfrak{A} = \mathcal{Q}(\mathfrak{B})$  and, for each  $a \in \mathcal{Q}(\mathfrak{B})$ , let  $X_a = \{b \in B : \varphi(b) = a\}$  where  $\varphi$  is the retract of  $\mathfrak{B}$  onto  $\mathcal{Q}(\mathfrak{B})$ . (3) implies (1). Suppose  $\mathfrak{B} = A[X]$ . The map  $\varphi \colon \mathfrak{B} \to \mathfrak{A}$  defined by  $\varphi(y) = a$  if  $y \in X_a$  is a retract onto  $\mathfrak{A} \in \mathscr{V}$ .  $\theta = (A \times A) \cup I_{\mathfrak{B}}$  is a congruence relation on  $\mathfrak{B}$  whose quotient  $\mathfrak{B}/\theta$  belongs to  $\mathscr{N}$ .  $\theta \cap \ker(\varphi) = I_{\mathfrak{B}}$  so  $\mathfrak{B}$  belongs to  $\mathscr{V} + \mathscr{N}$ .

As an immediate consequence of Lemma 1 and Proposition 2 we obtain:

Corollary 3. An equation holds in  $J_{\mathscr{N}}(\mathscr{V})$  iff it is derivable from  $\Sigma_{\mathscr{X}}^{\mathscr{N}}$ .

Two varieties  $\mathscr{V}_0$  and  $\mathscr{V}_1$  in  $L_{\tau}$  are called *independent* if there exist a binary term b(x, y) in the language of algebras of type  $\tau$  such that b(x, y) = x holds in  $\mathscr{V}_0$  and b(x, y) = y holds in  $\mathscr{V}_1$ . This notion was introduced by Foster [4].

## 2. An Undecidability Result

Recall that a first-order theory is *inseparable* if there is no recursive set separating the logically valid sentences of the language from the sentences that fail in some model of the theory. This is a strong form of undecidability; it implies the theory is hereditarily undecidable (i.e., every subtheory is also undecidable). The main technique for showing that a theory T is inseparable involves interpreting into T a theory already known to be inseparable. For a detailed description of this method see [7] or [6].

Theorem 4. Suppose  $\mathscr{V}_0$  and  $\mathscr{V}_1$  are independent varieties and  $\mathscr{V}=\mathscr{V}_0+\mathscr{V}_1$  does not contain  $\mathscr{N}$ . Then  $J_{\mathscr{N}}(\mathscr{V})$  is inseparable (and hence hereditarily undecidable).

Proof. Suppose b(x, y) is the binary term that shows  $\mathscr{V}_0$  and  $\mathscr{V}_1$  are independent and suppose t(x) is the unary term (from Lemma 1) such that t(x) = x holds in  $\mathscr{V}$  but not in  $\mathscr{N}$ . We show  $J_{\mathscr{N}}(\mathscr{V})$  is inseparable by interpreting the theory  $\mathrm{DE}_2$  of two disjoint equivalence relations into it. This theory is known to be inseparable (cf., [2] Theorem 3 or [6], Theorem 16.56).

The interpretation is given by the formulas

$$D(x) := \forall y (t(y) = x \to y = x),$$

$$E(x, y) := \forall z (b(z, x) = b(z, y)),$$

$$F(x, y) := \forall z (b(x, z) = b(y, z)).$$

By Theorem 1 in [2] (or Proposition 15.17 in [6]) it suffices to verify

(\*)  $\begin{cases} \text{for every finite model } (A, R, S) \text{ of DE}_2 \text{ there exist } \mathfrak{B} \text{ in } J_{\mathscr{N}}(\mathscr{V}) \\ \text{such that } (A, R, S) \cong (D^{\mathfrak{B}}, E^{\mathfrak{B}}, F^{\mathfrak{B}}). \end{cases}$ 

Given (A, R, S) let  $\{R_0, \ldots, R_{n-1}\}$  denote the R-equivalence classes and  $\{S_0, \ldots, S_{m-1}\}$  denote the S-equivalence classes of A. Choose  $\mathfrak{B}_i \in \mathscr{V}_i$  and a one-one function  $f_i$  (i=0,1) such that  $f_0 \colon m \to \mathfrak{B}_0$  and  $f_1 \colon n \to \mathfrak{B}_1$ . Since R and S are disjoint equivalence relations on A,  $S_i \cap R_j$  contains at most one element for each  $(i,j) \in m \times n$ . Thus,  $f_0 \times f_1$  sets up a natural bijection between A and the subset

$$\bar{A} = \{ (f_0(i), f_1(j)) \colon S_i \cap R_j \neq 0 \}$$

of  $B_0 \times B_1$ . By adding elements to each element in  $B_0 \times B_1 \setminus \bar{A}$  we obtain an inflation  $\mathfrak{B} = (\mathfrak{B}_0 \times \mathfrak{B}_1)[X]$  of  $\mathfrak{B}_0 \times \mathfrak{B}_1$  that satisfies (\*).

Remarks. 1. If  $\mathscr{V}_0$  and  $\mathscr{V}_1$  have arbitrarily large finite models then  $\mathfrak{B}$  may be chosen to be finite. In this case the first-order theory of  $J_{\mathscr{N}}(\mathscr{V})$  is finitely inseparable. 2. It follows from Corollary 3 that  $J_{\mathscr{N}}(\mathscr{V})$  has a decidable equational theory whenever  $\mathscr{V}$  does. In section 4 we mention independent varieties  $\mathscr{V}_0$  and  $\mathscr{V}_1$  such that  $\mathscr{V} = \mathscr{V}_0 + \mathscr{V}_1$  is decidable. By Theorem 4  $J_{\mathscr{N}}(\mathscr{V})$  is undecidable. Thus  $J_{\mathscr{N}}$  does not preserve first-order decidability.

## 3. A Decidability Result

We show that  $J_{\mathscr{N}}(\mathscr{V})$  is a decidable variety whenever  $\mathscr{V}$  is a variety of projection algebras. The proof uses the idea of m-elementary subsystem,  $\mathfrak{A} \leq_m \mathfrak{B}$ , introduced by Dana Scott (cf. [6], pp. 352ff.) and closely resembles the proof that the theory of one equivalence relation is decidable.

Suppose  $\mathscr{P}_{\sigma}$  is a variety of projection algebras. By Proposition 2 every member of  $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$  is an inflation  $\mathfrak{A}[X]$  of an algebra  $\mathfrak{A}$  in  $\mathscr{P}_{\sigma}$ . For each  $m<\omega$ , we say that  $\mathfrak{A}[X]$  in  $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$  is m-basic if

- (i)  $|X_a| \leq m + 1$  for every  $a \in A$ ;
- (ii) for every n > 0,  $|\{a \in A : |X_a| = n\}| \le m$ .

Theorem 5.  $J_{\mathcal{N}}(\mathscr{P}_{\sigma})$  is a decidable variety (i.e., has a decidable first-order theory).

Proof. A straightforward counting argument shows that every m-basic  $\mathfrak{A}[X]$  in  $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$  has at most  $\frac{m(m+1)\ (m+2)}{2}$  elements and there are at most  $(m+1)^{m+1}-1$ 

isomorphism types of m-basic algebras in  $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$ . Thus it can be decided whether or not a sentence holds in every m-basic algebra. Hence it suffices to show that every  $\mathfrak{B}[Z]$  in  $J_{\mathscr{N}}(\mathscr{P}_{\sigma})$  contains an m-basic, m-elementary subsystem (see [6], p. 352). This is done in two steps.

- (1) If  $|Z_b| \ge m+1$ , choose  $Y_b \subseteq Z_b$  with  $b \in Y_b$  and  $|Y_b| = m+1$ ; otherwise let  $Y_b = Z_b$ . This yields a  $\mathfrak{B}[Y] \le m \mathfrak{B}[Z]$  where  $|Y_b| \le m+1$  for all  $b \in B$ .
- (2) For each positive integer k, let  $B_k = \{b \in B : |Y_b| = k\}$ . The collection  $\{B_k : k = 1, \ldots, m+1\}$  partitions B. For each k, set  $A_k = B_k$  if  $|B_k| \leq m$  and let  $A_k$  be a fixed subset of  $B_k$  with  $|A_k| = m$  in case  $|B_k| > m$ . Then  $A = \bigcup \{A_k : k = 1, \ldots, m+1\}$  becomes a subalgebra of  $\mathfrak{B}$ . Defining X as the restriction of Y to A we obtain an m-basic algebra  $\mathfrak{A}[X]$  and  $\mathfrak{A}[X] \leq_m \mathfrak{B}[Y]$ .

The desired conclusion follows from (1) and (2).

## 4. Applications to Semigroups

We look at what theorems 4 and 5 mean in the case of groupoids. For algebras where  $x \cdot y$  is the fundamental operation there are only two possibilities for  $\mathscr{P}_{\sigma}$ : the variety  $\mathscr{L}$  of all left zero semigroups (defined by xy = x) and the variety  $\mathscr{R}$  of all right zero semigroups (defined by xy = y). The variety  $\mathscr{N}$  (defined by xy = uv) consist of all constant semigroups. The variety  $\mathscr{L}^+ = J_{\mathscr{N}}(\mathscr{L})$  (respectively,  $\mathscr{R}^+ = J_{\mathscr{N}}(\mathscr{R})$ ) is defined by the laws (xu) (vy) = xy and xy = xz (respectively, (xu) (vy) = xy and xy = zy).

Both  $\mathcal{L}^+$  and  $\mathcal{R}^+$  are decidable by Theorem 5. The varietal product  $\mathcal{L}\otimes\mathcal{R}$  (introduced by Walter Taylor [8]) is the variety of all rectangular bands (defined by (xu)(vy)=xy and  $x^2=x$ ). It is an immediate consequence of [3] that  $\mathcal{L}\otimes\mathcal{R}$  is a decidable variety. Theorem 4 shows that the nilpotent closure  $J_{\mathcal{N}}(\mathcal{L}\otimes\mathcal{R})$  is hereditarily undecidable even though every proper subvariety is decidable.

The operation  $J_{\mathscr{N}}$  is an endomorphism of  $L_{\tau}$  so  $J_{\mathscr{N}}(\mathscr{L} \otimes \mathscr{R}) = \mathscr{L}^{+} + \mathscr{R}^{+}$ ; however, it cannot be a varietal product of  $\mathscr{L}^{+}$  and  $\mathscr{R}^{+}$  (for then it would be decidable).

#### References

- [1] CLIFFORD, A. H., and G. B. Preston, The algebraic theory of semigroups, Vol. I. Amer. Math. Soc. 1961.
- [2] Comer, S. D., Finite inseparability of some theories of cylindrification algebras. J. Symbolic Logic 34 (1969), 171-176.
- [3] Feferman, S., and R. L. Vaught, The first order properties of products of algebraic systems. Fund. Math. 47 (1959), 57-103.
- [4] Foster, A. L., The identities of and unique subdirect factorization within classes of universal algebras. Proc. AMS 7 (1956), 1011–1013.
- [5] Mel'nik, I. I., Nilpotent shifts on manifolds. Mat. Zametki 14 (1973), 703-712. Translated: Math. Notes 14 (1973), 962-966.
- [6] Monk, J. D., Mathematical Logic. Springer-Verlag, Berlin-Heidelberg-New York 1976.
- [7] RABIN, M. O., A simple method for undecidability proofs and some applications. In: Logic, Methodology and Philos. Sci. (Y. BAR HILLEL, editor). North-Holland Publ. Comp., Amsterdam 1965, pp. 58-68.
- 181 TAYLOR, W., Characterizating Mal'cev condition, Algebra Univ. 3 (1973), 351-397.

(Eingegangen am 20. März 1980)