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1. Introduction

This note contains two simple observations on the effect of allowing a CF language to
admit inductive definitions. Such languages can be generated by an unambiguous grammar and
they allow the construction of an “adequate’ algebraic semantics in the sense of Andreka — Nemeti —
— Sain [2] (henceforth referred to as ANS).

The development of an algebraic semantics for a well presented language L = <SM k>
in [2] depends on using a grammar G that satisfies an ~adequateness criterion’’. Section 3
of [2] presents examples of grammars that are adequate and those that are not. A careful analysis
of these examples reveals a common thread. In all cases the ”’meaning function” k for L was
defined by induction on the complexity of the words in S. This, of course, is the most
common way of defining a function on S. In most cases where G was not adequate for L
it happens that G is an ambiguous grammar and it is precisely the ambiguity that leads
to the inadequacy.In a nutshell, the rewrite rules of G conflict with the inductive clauses
used to define k. The point is that the ability to make inductive definitions on the syntax
S of a language implicitly gives a “parse” of S. We formalize this below (Proposition 1) and
show that, in the situation where the meaning function is defined by induction, the induced
unambiguous grammar is always adequate (Proposition 2).

2. Preliminaries
We briefly review terminology used in ANS [2].

A well presented language 1is a triple L = <SM,k> where S is a nonempty set
(the syntax of L) defined by a generative grammar G, M is a nonempty set-theoretically
defined class (the models of L), and k is a function on S X M (the meaning function of
L) that is also assumed to be set-theoretically defined.

We assume throughout that the grammar G generating S is context-free (CF).
Formally, G=< N)X, <R, :iel> > with nonterminals N, terminal symbols
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X(N N X = (), and rewrite rules (or productions) R,, iel. Each R, hasthe form
A u for some AeN and ue(™N U X)*. For each AeN the syntactic category of A
is the set

Sy, = {ueX* A =" u}

The syntax L(G) generated by G is defined as 1(G) = U {SA | AeN}, which we assume
equals S.

The first task in developing an algebraic semantics for L is to turn S into a
“syntactic algebra”, actually an N-sorted algebra or operator domain; § (see ADJ[1] or
ANS[2]). The universe assigned to the sort AeN is S,. The operationson § are derived
from the production rules in the following way. If R, is the rule

A, [ uOAlu1 C Anun

where uJ.eX* and AjeN for j<n+ 1, the associated operation F, has type
SAl X ... X SAn -> SAO and is defined as

Fi(al, c an) = Upd Uy, ..au

for each n-tuple (a;, ..., an)eSAlx Cee X8,
n

For each ¥{eM, k(—, ®£) = Auwk(u, ©%) is a function on S, hence a function on the
algebra S.. A grammar G is called adequate for L (see ANS[2]) if k(—, &) isa
homomorphism on § for each ¥HeM.

We also use the following terminology about sequences. Suppose 0¢,7eS C X*. We say
o isa partof 7, insymbols o €7, if 7=pu ov forsome u,veX* o0 isa proper
part of 7 if zo g7 and o# 7. 0 isa maximal part of 7 if 7 covers o in the poset
<S,E5>. 7eS is called a basic word (or atom) of S if it is a minimal element in the
poset <S, >,

3. Inductive domains

“What is going on when a function k is defined on a syntax S = L(G) by induction on
the “complexity” of words? To begin with, the value of k is specified on “atoms” of L(G).
Then, for every o0el(G), not an “atom”, the value k(o) is given by a function applied to
values ko), . . ., k(on) where 0,,...,0, are “less complex” parts of o. If k is
really a function, that is, well-defined, the parts Oy, .., 0, must be uniquely determined
from o. Thus, for inductive definitions to be possible, a “structuring” of S must be

present. This motivates the following notion of an inductive domain.

Definition 1. An inductive domain is a triple <8, <G, :je>, jo> where 8 isa CF -
syntax, {Ci :jeJ} is a partition of S, and jp€J such that the following hold: '
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(D) oeCj iff ¢ is a basic word of §;

0
(i) for every jeJ — {]’0} there is a sort A eN with Cj c S A, and there exist a
unique sequence <A ,...,A;> of sorts and unique uieX*‘ (for i< k) such

that every oeCj has the form

(1) 0= UgTihy - o Tylly

where 'rieSA. for i=1,...,k and Ty ..., T are maximal parts of 0. Conversely,
for every cholice rieS A for i=1,..., k, the o with description (f) is an element
of C;. '

The subsets Cj are called clauses. Fach clause has a type. Cjo has type 0. A clause Cj,
j# j, hastype k where k is the lenght of the sequence <Ay, ...,A > associated
with it. We say that a syntax S admits inductive definitions if there exist <Cj :je¥> and
jp€J such that <S, <Cj :JeJ>,j,> is an inductive domain. O

Definition 2. Suppose <S,<Cj : jeJ>, j,> is an inductive domain.

(i) An inductive definition over S 1is a system of functions <@j :jeJ>  such that
domain ()j = C, and ()j has type k whenever Cj has type k for all

0 Jo
jGJ - {JO}
(ii) A function h on S isdefined by induction by the inductive definition
<0j jef > if

(a) h(o) = . (0) for all geC, ;
Jo To
(b) for all aeCj,j # jo’ h{o) = Oj(h(rl), R h('rk)) where
o has the form (f) in Definition 1. O
Our first goal is to characterize when a CF syntax admité inductive definitions.
Proposition 1. A context-free syntax S admits inductive definitions iff S = L(G') for some

unambiguous grammar G’ (that is, no word possesses two distinct G “derivation trees, ¢f.,
Clark — Cowell [3]).

Proof. Suppose <S8, <Cj :jeJ >, jy> is an inductive domain where S = L(G) for some CF
grammar G. Let K = Cjo uad-— {j0 D. We define G'=<NX, < IE'j 1jeK>>  where N
and X are the nonterminals and terminals, respectively, of G. The rewrite rules

Pj,jeK, of G’ are as follows:
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let P be Al o
o G/

. N
for oeCJO SA,

for each clause Cj, j# gy let Py be A, g Mg Ay py oo Ay

where A, Apsovos A, are the unique sorts and oo - oo My the unique sequences in
(i) of Definition 1.

An easy induction shows that G’generates S. We show that G’ is unambiguous by
induction on word lenght. Cléarly each basic word of S has exactly one derivation tree.
Now consider a word ¢ in Cj where o¢. has the form (1) in (i) of Definition 1 and
each maximal part 7, of o has exactly one derivation tree. Any derivation tree for ¢ has
root labled A0 (recall Cj c S A0) and the lables, left-to-right, of the sons of AO are
exactly the symbols in the sequence pu, Appy .. A, u, and the subtree rooted at each
A, is exactly the derivation tree for 7. By the uniqueness in (ii) of Definition 1 and the
induction hypothesis, ¢ has exactly one derivation tree.

For the converse, suppose, S = L(G) where G is an unambiguous CF grammar
<NX<R, :iel>>. Let I' = {iel : R, has the form A l‘E o for some AeN and

0eX® ) T4 ¢ (we disallow A |~ A asa production) so fix ijel’ and define clause

Cio = {oeX*:Aia o forsome A eN}. Foreach iel —I', the rewrite rule R, contains

nonterminals on the right-hand side. Suppose R, has the form
AO |—G “OAl s e e s Ak“k
for some ,uieX* and AieN (i< k). Define the clause Ci as

* .
ciz {0eX": 0= mgTy by « - - Ty for some rleSAl, Cees Ty eSAk}_

Using the fact G is unambigucus, it is easily checked that
<8, <Cj jed -1Hu {io 1, iy > is an inductive domain. O
For a CF syntax S which admits inductive definitions we call the grammar G’ for S
constructed in Proposition 1 the grammar induced by the inductive structure. It is easy to

give examples of CF languages that can be generated by different unambiguous grammars;
see ANS, Example 3(i).

We now consider the relationship between having an inductively defined meaning func-

tion and an adequate grammar.

Proposition 2. Suppose L = <SM,k> is a well presented language. Then the existence of an
inductive definition for k( — , ##4 ), for each wleM, is equivalent to the existence of

an adequate grammar for L.
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Proof. First, suppose S admits inductive definitions and, for each e eM, k(-, o) is
defined by induction. We claim the grammar for S induced by the inductive structure is
adequate for L. It needs to be shown, for ¢feM, that the equivalence relation =e¢g on
S, defined by o =ey 7 iff k(o, ¥) = k(r, ®b), is a congruence relation on §. Towards
this end, suppose Fj is a k-ary operation of the type S, X ...X S Ay = S, , associated
with a clause Cj,j # Jg, and suppose 0; S T forall i=1,...,k, 0= Fj(ol, ce0y)
and 7= Fj('rl, .« ., 7). Then, by Definition 2(ii),

ko, W) = O,(k(o,, ), ... ko, &)

= O(k(r, ¥b), ... kir,, ¥b)

= k(r, ),

hence ¢ =gy, 7 as desired.

Conversely, if G is adequate for L, the homomorphism property for k( —, ®6) on
S gives an inductive definition of the function k( —, #6) on S.0
4. Example

We illustrate the remarks in the preceeding section for the implication language
L = <SM)k> treated in ANS[2], Example 3(iii), Section 3. S is(generated by the grammar
Gg = <NX, <R, rielg > > where N= {F], X= {p, riew}u {~}, I, =wy (=}
and the productions are:

R,:FLF>F

R, :F + ) (for iew).

The class of models is M = %2, The meaning function k is defined, for ¥be“ 2, by

induction as
k(pi, %) = %(1)

f
0 if &G =1 and k(¢, ¥ =5
k(p; > ¢, W) =9

1 otherwise

3

for each iew. The grammar G is not adequate for L. An adequate grammar can be
obtained from G, in either of two ways, depending upon what we desire to preserve.




Method 1. Keep the meaning function.
We must change the grammar. The inductive definition of k implicitly gives S the
structure of an inductive domain. The induced grammar has rewrite rules, for icw,
Ftp =>F

F - p,.

This is exactly the grammar G, considered in ANS[2] and is adequate by the proof of
Proposition 2.

Method 2. Keep the grammar (but make unambiguous by parsing). In the case of G6 , extend
X to X=X U{(,)} and let
R, : FI— (F>F)

R’ : F i~ P, (for iew).

1

Then G'=<N,X| <R/ :iel;>> isan unambiguous grammar which will admit inductive

definitions. In particular, we can define a new meaning function k { — ,et) for Wy | by
K'(p;, &) = W{(i), for each iew, and

rO if K'(p,®6) =1 and K'(y, ¥6) =0

K¢~ V), o) = ¢

1 otherwise.

S

G' is the grammar induced by the inductive structure, so by Proposition 2, G’ is adequate
for the language <S',M,k>. Of course, S’ = L(G') is slightly different from S due to the
added punctiiation.

The other examples of inadequate grammars in ANS[2] can be modified in the same way.

5. Concluding remarks

Semantics (or meaning functions) used in the vast majority of languages are defined by
induction. Thus, for all practical purposes, in dealing with context-free languages, we may as
well assume we have such a language. The content of Proposition 2 shows that, under this
assumption, an adequate algebraic semantics can always be constructed.

The content of Proposition 1 may be viewed as a justification for assuming from the
beginning the syntax is parsed” (as in, for example, ADJ[1]). The inductive structure
induces a natural unambiguous grammar that generates the syntax anyway. On this point we
quote Clark and Cowell [3], page 159.
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“When a context-free grammar is used to specify the syntax of a programming language it is
clearly important that the grammar be unambiguous. For, since the productions used in the
generation of the program indicate the way the program should be ’parsed’ and its meaning
derived, the existence of two distinct parses for the same program might lead to an interpreta-
tion of the program by the compiler different from the interpretation intended by the program-
mer.”

The author is grateful to H. Andréka and 1. Németi for their encouragement and correspond-

ence concerning the ideas presented in this paper.
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