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GALOIS THEORY FOR CYLINDRIC ALGEBRAS
AND ITS APPLICATIONS
BY
STEPHEN D. COMER'

ABSTRACT. A Galois cortespondence between cylindric set algebras and permutation
groups is presented in this paper. Moreover, the Galois connection is used to help
establish two important algebraic properties for certain classes of finite-dimensional
cylindric algebras, namely the amalgamation property and the property that epimor-
phisms are surjective.

The importance of the amalgamation property (AP for short) in algebraic logic
has been recognized for a long time. In [16] the connection with the interpolation
property of first-order logic is discussed. The positive amalgamation results from the
author’s thesis [2] and their extensions announced in [3] are cited in §2.4 of [16].
These results are established, with a slight improvement, in §4 below. The key to this
study is a lattice anti-isomorphism between subgroups of the symmetric group S,
and subalgebras of the full set algebra (e, p) when 0 <y < a + 1 < w. This
Galois theory is developed in §2. It is applied in §3 to show that the algebra 9 (a, u),
0 <p<a+1 <w, is homogeneous and the variety it generates has enough injec-
tives. The announcement [3] dealt with the case y < . In this treatment of Galois
theory we also include the results of H. Andréka and I. Németi which show that the
theory works for p = « + 1, but for no larger .

In §5 the property (ES) that all epimorphisms are surjective is established for
certain varieties of CA ’s. It has been shown by I. Németi (see [14]) that the ES
property for classes of CA s is related to Beth’s definability result. The question of
when the ES property holds was raised in [8, p. 311, Problem 10].

To put the results in this paper in perspective, perhaps an additional remark will
be useful. Many of the results assert that some property (that depends on « and )
holds if p < @ + 1 < . Upon reading a preliminary draft of the paper, Andréka
and Németi showed that most of the main results could not be improved in the sense
that examples show that the properties fail for « > > o + 1. In particular, this
applies to Theorems 2.2, 2.8, 2.9, 3.7, 3.8(2), Corollaries 3.10, 5.5 and Lemma 5.2(2).
Essentially the only result where the value of  is not known to be the best possible
is in Theorem 2.5.
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algebras. It was also due to their encouragement that the unpublished portions of [2]
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1. Preliminaries. We primarily use the notation and terminology of [7 and 8], but
in order to make the paper reasonably self-contained a quick summary of basic
terminology and some unpublished results is given in this section.

The class of all cylindric algebras of dimension a is denoted CA , and the class of
all polyadic equality algebras by PEA . The collection Sb(“U) of all subsets of *U
can be made into a cylindric field of sets in a natural way. This algebra is referred to
as the full set algebra with base U and denoted by % (a, U). Subalgebras of full set
algebras are called set algebras and the class of all such CA s is denoted Cs,. The
class of all Cs,’s with base U, where |U| = p, is denoted Cs,. A generalized
cylindric field of sets is a CA , obtained by relativizing a set algebra to a unit set of
the form U,.,;“U; where {U: i € I'} is a collection of nonempty pairwise disjoint
sets. The U;’s are called subbases and the class of such algebras is denoted by Gs,,.
The class of Gs,’s where |U| = p for each subbase U is denoted ,Gs,. We are
particularly interested in the case where 0 < p, a < w. In this case, the class [,Gs,, is
just the variety generated by U (u, a).

Ina CA U define

Cryx =Gy, Cp(x) whereT = {kyseok,} Can
We also let

dp= T1 d and d(I'xT)= J] —dy forlca.
kael kael; k+A
For short, let d = d(a X a).

A CA, U has characteristic g, 0 < p < a N w, if A has a simple minimal
subalgebra, C,,,d((p + 1) X (p + 1)) = 0, and Coyd(p X p) = 1. ACA, 9(, with
a simple minimal subalgebra, has characteristic 0 if Cond(A X N)# 1 for all
A < (a+ 1)Nw. The class of CA’s with characteristic u is denoted ,CA,. For
0<p<a<w, CA, =1Gs, and all ,GS,’s with p > « have characteristic 0. The
full set algebra A (e, p) is a simple algebra with characteristic p if 0 < p < a < w
and characteristic 0 if o < p < w.

The set of all atoms of a CA, B is denoted At(*B). Atoms of simple minimal
CA s have a nice description (see 2.4.68 of [7)). For a simple minimal CA , A of
characteristic p where 0 < p < « < w, the atoms of A consist of all nonzero
elements of the form d(I' X I')-Tlcpdy, where P is a partition of « into < p
subsets if w # 0, and a partition of e« if p =0, and T is subset of « such that
IT' N A} = 1 for each A € P. The atom associated with a partition P is denoted a p.

The notion of a PEA , with characteristic u is defined in the same way as for CAL.
An unpublished result of Leon Henkin states:

TurOREM 1.1. Every PEA ,, a < w, of positive characteristic is representable.

The next result shows that simple PEA s and CA’s with positive characteristic
are really the same.
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THEOREM 1.2. For 0 < p < a < w substitution operators can be defined on a simple
WCA B such that *8 becomes a simple PEA , with characteristic .

The proof of 1.2, which is quite long, will be published separately. The following
corollary of 1.1 and 1.2 due to Leon Henkin will be used in 3.8 to help show that
certain algebras are injective,

COROLLARY 1.3, Every WAL With 0 < p < & < w, is representable.

It follows from 1.3 that every simple CA ,, u > 0, is embeddable in % (a, p). The
substitution operation on (e, ) will be denoted S(7), i.e., for r €% and x €
A, p)

S(r)x={fep: frex).

The notation S(7) is used in place of the standard §, to avoid confusion with S,
which denotes the group of all permutations of p.

2. Galois theory. For 0 < p,a < w and a group G of permutations on p, a
subalgebra A (a, p); of A(a, p) is associated with G in the following way. Let G
consist of all ¢ for ¢ € G, where § is the automorphism of E)I( a, 1) defined for each
X C% by 6(X)= {ay: y € X}. It is casily seen that G C Aut A(a, #) and the
correspondence of o to ¢ is an isomorphism S, = Aut A(a, ). Let A(a, p) denote
the subalgebra of A(a, p) whose universe consists of all elements fixed by every
ieq.

For B C A(a, p), the Galois group of B, denoted G(B), is the group of all o €
such that ¢ fixes each element of 8.

The following result, whose proof is routine, connects subgroups of S, with
subalgebras of A (e, ).

TuroreM 2.1. (1) If H< G C S, then A(a, p); © (e, p)y; moreover, G C

GQA(a, p)g).
@) IfB € C A, p), then G(€) C G(B); moreover, B C A (a, 1) G(wy-

The main goal in this section (Theorem 2.9) is to show that under certain
conditions the correspondence in 2.1 becomes a lattice anti-isomorphism. For p < «
the proof is related to ideas of Krasner [10]; for u = a + 1, the proof is due to H.
Andréka and 1. Németi.

For G a subgroup of S, and p €% let p© = {op: 0 € G} denote the orbit of p
under the action of G on “u. Clearly, Al (e, p)g) = { p%: p €% ).

THEOREM 2.2. For 0 < u < a + 1 < w and a subgroup G of 8, G = G(A(a, w)g);
thus, the assignment of A (e, u)g to G is one-one.

ProOF. The conclusion is trivial if 0 < p < 2; so assume that 2 < y and G C S,
By 2.1(1), G € G(UA(a, p)g). In case p < & choose p €% such that Rg p = p. F01
o€ G(U(a, p)g), 6(p°) = p® so op = p for some 7 € G. The choice p implies
0=7€G and s0 G = G(A(a, p)g), as desired. Now, assume p = a + 1 and
0 € G(A(a, u)g). Choose p €% to be one-one and, as above, find 1 € G with
op = 7p. Since ¢ and 7 agree on Rg p and p = |Rg p| + 1, the permutations ¢ and r

agree everywhere. Hence 0 = 7 € G(U (@, p);) as desired.
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H. Andréka and 1. Németi have shown that Theorem 2.2 is the best possible in the
sense that if g > a + 2 > 4, there exist distinct subgroups of §, with the same
algebra of fixed points. For example, both §, and the alternating group on p have
the minimal subalgebra of A («, p) as their algebra of fixed points since both are
a-fold transitive (because g > o + 2).

A function f €% is called normal if p < aand p=Rgforif p=a + 1 and fis
one-one.

For f €%, i € &, and u € p define f(i/u) = (f ~ {(i, f)}) YV {(i, u)}. For p =
o + 1 and f €% normal, define m,f = f(i/u), where u is the unique element of
p~Rgf.

The following facts about functions will be useful.

LEMMA 2.3. Suppose p = o + 1 and f €% is normal. Then

(1) foreach i < o, mym,f = f;

(2) foro € S,andi < a, m;(of ) = om,f;

3) fori <j < & fG/f)Y/F) = mmm,fs0 S(, DY f) = (mammf};

(4) for g €°u, g normal, there exists a finite sequence iy, . ..,i, of elements of a such
thatm; -+~ m; [=g.

PROOF. (1)-(3) are clear.

(4) First suppose Rg f # Rg g, say u € u ~ Rg fand g, = u for some i € a. Then
Rg f= Rgm,g so it remains to consider Rg f= Rgg. In this case there is a
permutation 7 € S, such that g = fr,ie, g &€ S(r~H{f}. Since ! is a product of
transpositions, the description of g follows from (3).

For a subalgebra B of A (a, p) and f €°u, let X* =T1{b € B: f € b}. When the
algebra B is clear from the context we write X, for short. The X,’s are clearly the
atoms of B.

LEMMA 2.4, Fora, p < w,f €%, i < aand B C A(a, u):
MW CXp=2{ X, q€ C{[});
Qforp=a+landfed,mX, = X,

PrOOF. (1) Since f € X, X, - C X, + 0 if g € G{f}. Hence X, < C; X, because
X, is an atom and so G X, > X{X;: ¢ € G{[}}. Now suppose p € C; X. Since
p(i/u)y € X, C;X, for some u, X; < G X,. Thus, f(i/v) € X, for some v. Let
q=f(i/v)€ C{[f}. Since g € X, p € X, = X, from which the inclusion < fol-
lows.

(2) For f normal, d-c{f}y={f,mf)} so (1) implies d- ¢, X; = X, + X, f. If
X,=d- ¢ X, then X, f= X, and m X, =m,(d - ¢,X;) = X; from which m, X, =
X, s follows. If d - ¢; X, is not an atom,

Xm;f = d_‘ Cl'Xf' “Xf < min.

On the other hand,
d- cin=Z{Xq+ X, q€ Xf}
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S0
d- (XX, = Z{Xm,.q3 g€ Xf} >m, X,
which gives m, X, = X,, ..

THEOREM 2.5. For 0 < p < a + 1 < w every subalgebra B of A (a, u) is generated
by a single element, namely, 8 = Sg{ X, } where p is normal.

PROOF. See 1.4.6 of [8] for the proof when p < a. Assume = a + 1. Since the
atoms of B have the form X, it suffices to show that if p is normal, then
X, € Sg{ X, } for every f €°u. From 2.4(1), \

dy Xy =2 {xpqsd; e{f}} = X
so that
(1) Xiiyy) € Se{ X} foreveryf ey,

If f is normal, the proof of 2.4(2) shows that X,,s 1s either X, or d- ¢ Xp e X,
Hence X, , € Sg{ X, }. By 2.3(3) it follows that

(2) X, € Sg{ X, } wheneverf € dand g = f(i/f,)(j/f,).

Since every f €% can be obtained from p by a composition of transpositions and
replacements, the desired conclusion follows from (1) and (2).

Theorem 2.5 was announced (without proof) for p = & + 1 in 1.4.8 of [8] as the
result g(a, @ + 1) = 1. The exact relationship between g and o for which the
conclusion of 2.5 holds is still open. Some partial results are announced in Problem 8
of [8, p. 311].

LEMMA 2.6. Suppose . < a and p, f °u where p is normal. Let P = {85004, 1)
be the partition of o, where A, = p™( j} for j < p, and let Q = {LossL_1} bea
similar partition obtained using f. Choose A, T C «a such that A N A ;= {v} and
I'nT, = {u} for each j € Rgf. Let A; denote a permutation of « such that
A(u;) = v, for j € Rg f and let W = A(T)C A For f € a € AD), where B is a
subalgebra of (e, p), define Yr=ap- Cyue W)S(?\f)a, where ap is the atom associ-
ated with the partition P (cf. §1). Then ay - Cp-1yS(A) y; < @.

PROOF. Suppose ¢ € ay - CuoryS(A/) yy. Then there is ¢' € S(A7') ys such that
gl I'=4¢q' 1 T and for g¢(i) = q(u;) for all i € I; (where j € Rg f). Since ¢’ = hA;
for some h € y, there exists 2’ € a such that h’)\}l I'W=nh! W.Nowforj € Rg/,

h’(“j) = h/}\}l(vj) = h(Uj) = h}\f(uj) = ql(“j) = Q(“j)'

Since b/, q € ag, 4 = b’ € a, which establishes the inclusion.

Actually, a - C(a~r)S(}\‘f1) Yy = a holds in Lemma 2.6 but this is not needed
below. In 2.8, Lemma 2.6 will be applied with a = X, where p is normal. We will
need to know that y, € B whenever f € X,. For p < a we can appeal to 1.2 but a
separate argument is needed for p = a. It does not require much additional work to
treat p < a. As notation let X7 = { fr: f € X} whenever X Cuand 7 € §,,.
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LeMMA 2.7. Suppose 0 < p < a < w, p €% is normal, B is a subalgebra of A (a, )
andt € S,. Then

(1) X, = X,7 belongs to Sg{ X, };

(2) S(r) X, is an atom of ‘B.

PRroOF. (1) Since 7 is a product of transpositions and, f is normal iff f7 is normal,
it suffices to consider only 7= (i, j) for i, j <a, i #j. As in 2.6 associate a
partition of &, P = {A,....4,_;}, with p. If p € d,;, then X, < d,;, which yields
gt = qfor all g € X,. It follows that X;7 = X, = X in this case.

Now suppose p € —d,; so that / and j belong to different blocks of the partition P.
Without loss of generality, assume i € 4,, j € 4; and denote Ay = A, ~ {i},
A} = A, ~ {j}. Of course, either A} or A] (or both) may be empty. Consider the
partition R = {A{ U {j}, A1 U {i}, 4,8, ).

Case 1. Ay = A} = 0. Note that P = R and ag - ¢;¢;{ p} = { p, p7} so Lemma
2.4(1) yields

3) aR-c,-chp=aR~E{Xq:q€c,-cj{p}}
=2 A{X; q€ap cc{p}}=X,+X,.
If ag - ¢;c; X, is an atom, then X, = ap - ¢;¢; X, = X, which yields

Xr=ap {qr:q€ce,X,} =ag ¢ X, =X,

LA 4

since (¢;¢; X,)1 = ¢;¢; X,. Also, note that X,r € Sg{ X, }. Now, if ag - ¢;¢; X, is not
an atom, (3) yields

X, =ag X, -X,

is in Sg{ X, }. Also since g € X, implies X, = X,,, (3) yields
ag - X, =2 {X,+ X, q€X,},
which gives
ag- ¢ X, —X, =2 (X, q€X,} > X,

For feap-cc;X,, fla~{i,j}=gla~{ij} for some g& X, and p=
(f(D), f(H)YYg*a~ (i, jH. I f& X, f+# gsof=gr & X,7. Thus,

X,, =ag- X, -X, = X7

as desired.

Case 2. Ay #+ 0 or A} # 0. Assume, without loss of generality, that k € Aj.
Suppose f € ag - ¢;c;{g}, where g € a,. Then f a ~ {i, j} =gl a~ {i, j} and
f() = f(k)=g(i). If A} # 0, say [ € A], then f(i) = f(/) = g so f = gr; while if
Ay =0, then p = {f(i)} U g*(a ~ {j}), which implies f(i) = g(/), also yielding
f=gr. Thus ag - ¢;c;,{g} < {gr}. The argument above can be reversed to show

(4) aR'CiC/{g}z{gT}-
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Applying (4) when g € X, yields ay - ¢;¢; X, = X,7. On the other hand, (4), with
g = p, and 2.4(1) give

aR.ciCjXp=Z{Xp:qeaR'c {p}} ])T

Thus, X, = X, in Case 2 and part (1) follows.
(2) Itis easily seen that S(r) X, = XpT‘l which, by (1), is the atom X, -1,

THEOREM 2.8. Suppose 0 < < a + 1 < w and B is a subalgebra of A(a, p). Let
G = G(B) and p €°y be normal. Then X, = p°.

PROOF First assume that u = « + 1. Since p € X, and X, is invariant under G,
p’c X,. Now suppose f € X,,. Then f € d so we may choose a &S withf=op.In
order to show 6 € G = G(%) it suffices to show 6X, C X, since, by 2.5, X,
generates B. For ¢ € X, 2.3(4) gives g = M, - m; p (= n_ap for short) for some
finite sequence ig,...,i, of elements of a. Then X, =X, = X, = mX, by 2.4(2).
Hence og = omp = mop = mf € mX, = X, (using 2.3(2)) and, thus, o0 € G as de-
sired.

Now assume p < a. Suppose p, f€°% where p is normal, and associate
P,Q,A, T, u;,v, A, and W with p and f as in the hypothesis of Lemma 2.6. Note
that

(1) prW=fNIr W
Hence p € y, for every f. For the remainder of the proof we assume the atom « in 2.6

is X, and f€ X,. By 2.7(2), S(A;)X, belongs to B and, hence, each yeB. It
follows from (1) that p € y, for each f, hence

(2) X, <y, foreachfe X .
Now, foro € Sy
(3) o & G implies op & X,.
If o & G, then 6(X,) # X, by 2.5. Thus, of & X, for some f € X,. In view of (2),

it suffices to show op & ;. Because of € ayand of | T' = oph;1 T by (1), it is not
hard to see that

(4) of € ay CoryS(AH){op}.

Now, if op € y;, (4) and 2.6 yield of € X, which contradicts the choice of f. Hence
(3) holds.

Finally, since X, is invariant under G, p© < X,. Now suppose f € X, < a,,. Then
P=Q and there exist 0 € §, such that A Loy for j < p and f = op Since
op € X, (3) implies o € G. Fherefore fep® and hence, X, < pC.

THEOREM 2.9. For 0 < u < a + 1 < w the correspondence in 2.1 between subgroups
of S, and subalgebras of A (a, p) is a lattice anti-isomorphism.

PrOOF. By 2.2 the correspondence is one-one and by 2.1 it is enough to show that,
for every B € A(a, p), B = A(a, ¥)gew)- Let G = G(B). By 2.1 we know that
B C A(a, p); whenever B € A(a, p). By 2.5 and 2.8, B = Sg{ p} for any normal
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p €%. However, the p©’s are atoms of %(a, p); and, by 2.5, a normal p €%
generates A (a, ). Thus, B = A(ea, p); as desired.

It was noted following the proof of 2.2 that the assignment of % (a, p), to G was
not one-one when 4 < o + 2 € p < w. Thus, the correspondence in 2.9 will not be
an anti-isomorphism in this case. However, one can also ask if, possibly, the
correspondence could still be onto. The answer is negative. Andréka and Németi
have produced an example of a set algebra B € A(a, p), again with a + 2 < p < w,
for which 8 # A (e, pt)gp) and the minimal atom containing each normal p is not
an orbit. Thus, the assumption that u < « + 1 cannot be removed from either 2.8 or
2.9.

3. Injectives and homogeneous algebras. For reasons that will become apparent in
the next section it is useful to know the CA -injective algebras. For any class K of
similar algebras, an algebra % € K is a (weak) K-injective if for every 8, € € K,
with B € €, every (monomorphism) homomorphism A: B — U extends to a homo-
morphism 2*: € — 9.

By the following lemma we do not have to distinguish between weak K-injectives
and K-injectives when K is a homomorphism closed class of CA s.

LeMMA 3.1. For a class K of similar algebras closed under homomorphic images and
possessing the congruence extension property (CEP), an algebra is a K-injective if and
only if it is a weak K-injective.

For many classes of algebras there are no nontrivial injective algebras, due to the
following simple lemma.

LemMA 3.2. For classes K and L, with K C L, where all algebras in K with more
than one element have isomorphic minimal subalgebras, there are no nontrivial L-injec-
tive algebras in K if K contains simple algebras of arbitrarily high cardinality.

The lemma applies, in particular, to the case where K is a variety, the notion of
“simple algebra in K ” is elementary, and K contains an infinite simple algebra. In
the case of CA s,

COROLLARY 3.3. (i) There are no nontrivial injective CA,’s.
(i1) For a > 1 there are no nontrivial injective CA s of characteristic 0.

PrROOF. (i) Let K= L = CA, in 3.2 and note that every BA can be made into a
simple CA,. For (ii), if 1 < a < w itis not difficult to find an infinite simple algebra
(and the notion of “simple algebra” is elementary). For a > w, simple Lf,’s of
arbitrarily high cardinality can be constructed from models.

Part (i) of 3.3 answers the specific part of Problem 4 in Halmos [5]. James S.
Johnson observed that 3.2 also implies there are no injective modular lattices (cf.
Balbes [1]). The following lemma is due to J. Donald Monk.

LeMMA 3.4, For a > 1 every complete discrete CA  is injective.

Proor. Since CEP holds in CA,, by 3.1 it suffices to consider 8 € € and a
monomorphism 8 » % where ¥ is complete and discrete. If follows that B and €
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are discrete and, since the Boolean reduct of 9 is injective, it follows that % is
injective as a CA .

From 3.4 there exist nontrivial CA -injectives for all « > 1. Below we will see
there are nondiscrete ones for @ < w. The next two results reduce the question of
injectives to each characteristic.

LEMMA 3.5. Suppose a CA, A = Py A, for some A C a N w and each A, is a
nontrivial CA , with characteristic N. Then U is a CA -injective if and only if A, is a
CA ,-injective for all A € A.

PROOF. Suppose A is a CA ,-injective, A € A, B and € are CA s, B € € and A:
B — A, is a homomorphism. Set B, =€, = A, for k € A, k # A and B, = B,
€, =C.Then P ., B, C P.,€, and i induces a homomorphism#A™: P, , B, — .
Since U is CA ,-injective, " extends to a homomorphism k™: P,., &, — %A. For
x € P B, with x, =0 for k # A and x), = 1, k" induces a homomorphism k of
€ = (P.ca€ ) xinto U, which extends 4. Thus U is a CA -injective. The converse
is obvious since a product of injectives is injective.

THEOREM 3.6. Every CA -injective algebra is a product of injectives of distinct
characteristics.

PrOOF. A CA ,-injective is a retract of a complete CA , and thus complete. The
theorem now follows from 3.5 using 2.4.66 and 2.1.33 of [7].

We now turn our attention to CA ;’s with a fixed characteristic p # 0 and a < w.
A CA, U is called homogeneous if every isomorphism between subalgebras of 9
extends to an automorphism of 9.

As a consequence of the Galois theory result 2.9 there are natural homogeneous
CA/s. Similar results were obtained by Krasner [10] for another type of algebraic
structure (cf. also [11, 12)).

THEOREM 3.7. For 0 < u < a + 1 < w, A (@, p) is homogeneous.

PROOF. Suppose f: B = € where B = A(a, p); and € = A(a, p),, according to
2.9. Define p €°u by p, = min{i, u — 1} for i < a. Clearly, p is normal, p® € At(B),
s0 f(p“) € AYE), say f(p) = ¢". Choose o *u such that o(i) = g, fori < u N «
(and o(a) € p ~ Rg g if p = a + 1). Since p°, ¢ < d(I' X I"), where I = a N p,
o is a permutation of p and thus ¢ is an automorphism of (e, u) such that
6(p9) = f(p?). Since B is generated by { p®) (see 2.5 and 2.8) it follows that f is
induced by 6.

The next result shows there are CA ,-injectives with positive characteristic for
a < w. Recall that 7, Gs,, is the subvariety of CA , generated by ¥ (a, u).

THEOREM 3.8. (1) A(a, p) is CA ~injective for 0 < p < a < w.
(2) A(e, p) is an 1, Gs -injective for 0 < p < a + 1 < w.
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PrOOF. (1) In view of 3.1 it suffices to consider

B
Ul

/
A > A, p)

where %, B are CA ’s. Since % (a, 1) has characteristic u > 0, ¥ and B satisfy the
identity C(NH)J((M + 1) X (¢ + 1)) = 0 and, hence, we may assume % and B have
characteristic . For I a maximal ideal of %8, 8 /I is a simple algebra of characteristic
., hence embeddable in % (e, u) by the representation result 1.3.

B > B/ > Ala,p)
Ul g ¥6

/
A > A(a, p)

Let g denote the composite homomorphism restricted to %. Use 3.7 to obtain an
automorphism & of A (e, ) extending fg~'. The outer diagram commutes giving a
homomorphism that extends f.

(2) It suffices to consider A, B € I,Gs, such that

B
Ul

S
A > A(a, p)

for some injection f. For any maximal ideal I, B /1 is simple. Because CA ’s have
distributive congruence lattices, Jonsson’s Lemma [9] implies that 2B /1 is embedda-
ble in % («, p). The result now follows as in (1) using 3.7.

Theorem 3.8 yields several corollaries.

COROLLARY 3.9. For 1 < p < a < w, a CA, U with characteristic n is CA ,-injec-
tive if and only if U is a retract of " (a, p) for some I # 0.

An algebra with characteristic 1 is injective iff it is complete and discrete. All
CA _-injectives, for « < w, can be described by combining 3.3(ii), 3.5, and 3.9.
The following will be needed in §4.

COROLLARY 3.10. For 0 < p < a + 1 < w, [,Gs, has enough injectives, i.e., every
member of I,Gs, is embeddable in an [, Gs -injective.

Using 2.4.66 of [7], for @ < w, a CA, that satisfies d(a X a) = 0 is a product of
CA s each with some positive characteristic. Thus,

COROLLARY 3.11. For 1 < «a < w, the variety of CA s defined by the equation
d(a X &) = 0 has enough injectives.

The hypothesis that u < « + 1 cannot be dropped from 3.7, 3.8 and 3.10.
Andréka and Németi have shown that, for w > p > a + 2, A(a, ) is not homoge-
neous. It follows that the algebra is neither 7,Gs ,-injective nor can it be embedded in
one.
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4. Amalgamation property. The amalgamation property for JCA, with-0 < p <
a M w was announced in [3]. Since WAL= 1,Gs, for 0 < p < a < w, Theorem 4.2
will slightly improve the original result for a < w.

The following easily proved lemma, due to R. S. Pierce, is a useful tool for
establishing the amalgamation property.

LemMA 4.1. Suppose K is a class of similar algebras such that:
(1) K is closed under isomorphisms and finite products;
(ii) K has enough K-injectives.

Then K has the amalgamation property.

The criteria 4.1 and 3.10 immediately yield:

THEOREM 4.2 (1) The amalgamation property holds in 1Gs,for0 <p<a+1<w.
(2) The amalgamation property holds in (LA for0 < p<a <o

Tracing the arguments involved in the proof of 4.2(1) it is easy to see that for
p, a < w, I,Gs, has the amalgamation property if and only if % (a, u) is homoge-
neous.

The restriction @ < « in 4.2(2) can be removed using an ultraproduct argument
involving reducts of CA ,’s similar to the argument in Monk [13).

THEOREM 4.3. For 1 < p < w, WCA  has the amalgamation property for all & > w.

PROOF. Suppose a > w and 1 < p < w. Let L be the set of all finite subsets J of «
such that p + 1 € J, and for each J € L choose a one-one function v, of |J| onto J
that extends the identity on u. For % € 4CA, let A, denote the y,-reduct of 9 (cf.
2.6.1 of [8]). Then A € CA,; forJ € L.

Suppose U, B, € belong to 4CA, such that % € B and % C €. By 4.2(2), the
amalgamation property holds in LCA,, whenever u < n < w. Thus, for each J € L,
there exist a ,CA;; ©, and monomorphisms g,, f; such that the following diagram
commutes (& is the identity embedding).

8r

SB[J] > @J
82 15
5
Ay > €y

Let M, = {Ke L:JC K} € Sb(L)forJ € L. Then M = {M,: J € L} generates
a proper filter in Sb(L). Let F denote an ultrafilter in Sb(L) that extends M.

A structure © of the similarity type of CA, can be defined as follows. We let the
universe of © equal the ultraproduct P, D;/F and define the Boolean operations
in the usual way. For k, A < a define d 3 = h/F, where h € P, D, is defined by

) - |

where i = y;'x and j = y;'A. For k < a and & € P,_, D,, define ¢, (h/F) = k/F,
where k € P, D, is defined so that when k € J, k, = ¢y-1.(hy).

ds ifk,AeJelL,

arbitrary  otherwise,
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The structure D is a CA, with characteristic p. Define g €D by g(x) = h/F,
where h € P,., D, is defined by h; = g,x for J € L and x € B. Similarly, f €D
can be defined. Both f and g are monomorphisms and the diagram

g

B > D
LI Lrs
8
A > €

commutes.
The results above have the following corollary. Recall 2.4.66 of [7].

COROLLARY 4.4. The amalgamation property holds in the following classes:
(i) the class of CA s that satisfy d(a X ) = 0 for a < w; and
(ii) the class of CA s that satisfy d(p X p) = 0for 0 < p < a N w.

In the next section we need to know that the amalgamation property holds for the
class of simple algebras in various varieties. The next result allows us to apply the
previous work.

THEOREM 4.5. The amalgamation property holds for the class of all simple algebras in
a variety V of CA s if the property holds in V.

Proor. Consider simple algebras %, 8, € € ¥ and monomorphisms f: % — B
and g: % — €. Suppose D amalgamates A — B and A — € in V. Then, for a
maximal ideal I of ©, D /I is simple and it easily follows that ©© /I also amalgamates
fA —>Bandg: A - €.

5. Epimorphisms. In this section it will be shown that ES (that is, epimorphisms
are surjective) holds for certain varieties of CA . ’s. We assume throughout that
a < w.

It seems to be a folklore result that epimorphisms are onto in the case of Boolean
algebras. An easy way to establish this is, via duality, to show that every monomor-
phism of Boolean spaces is a one-one map. The same strategy is employed in 5.3 for
certain varieties of CA ;’s. The appropriate dual of a CA, is the notion of a reduced
a-space introduced in [4]. For @ < w, a reduced a-space is a sheaf (X, ©) of simple
CA s over a Boolean space X. The duality between CA s and a-spaces is reviewed
in the next few paragraphs.

For a CA, % let X() denote the space of all maximal ideals of the BA Zd(2l) of
zero-dimensional elements of . For x € X(%), X = {a € A: a <z for some
z€x)} is an ideal of . The stalk ©, over x € X(U) is the CA, A/X and
G(A) =U{&: x € X(N)}. For each a € 4 define o,: X(A) — S(A) by 0,(x) =
a/%. S(A) is given the smallest topology which makes all o,’s (a € A) open. Then
A = (X(A), S(A)) is a reduced a-space called the dual of .

The construction of a CA , from a reduced a-space uses the sectional functor. Let
7. & — X denote the projection associated with an a-space (X, ©). A function o:
X - & is a section of (X, ©) if 7o is the identity on X. The set I'( X, &) of all
continuous sections of (X, &) becomes a CA , by defining the operations pointwise.
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Of particular interest to the discussion here is the duality between CA , homomor-
phisms and sheaf morphisms. Given (reduced) a-spaces (Y, ©) and (X, ), a sheaf
morphism H. (Y, ©) = (X, L) is a pair H = (A, ), where A is a continuous map
Y — X and p is a continuous map Y +, T - & such that py=p(y, =) is a
homomorphism of Lyyynto S . Weconsider Y +, T = {(p, 1) € Y X T:A(y) =
mt} as a subspace of ¥ X T. A sheaf morphism (A, ) = H: (Y, ) (X, T) of
a-spaces produces a CA ,-homomorphism I'(H): T(X, T) - I'(Y, ©) in the natural
way: for ¢ € I'(X, T) define I'(H)o by (I'(H)o)(y) = p(y, o(Ay)) for all yEevY.
A sheaf morphism 24 B¢ — 9 can also be associated with a CA , homomorphism
h: A — B. Define h’ = (h*, h°), where, for y € X(B), h*(y) = h™' N Zd() and,
fory € X(B)anda € 4,

ho(h,a/1*(y) ) = h(a) /7.

Theorem 1.2 of [4] establishes a dual equivalence between CA s (with homomor-
phisms) and reduced a-spaces (with sheaf morphisms). The next lemma describes
sheaf morphisms dual to surjections of CA s,

LEMMA 5.1. Suppose %A, B € CA, for a < w, h: A = B, and h' = (h*, h°) maps
B¢ = A Then h is onto B iff (i) h* is one-one, and (ii) for each y € X(B), oy, =)
is a surjection of the stalk over h*(y) onto the stalk over y.

PROOF. Assume that (i) and (ii) hold. To simplity notation let ¢ = (X, T) and
B¢ = (Y, @). Because of the natural isomorphisms 9 = T'(9¢ ) and B = T'(B9), to
show that 4 is onto it suffices to show that I'(4) is onto. Suppose ¢ € I'(Y, &). For
each x € ¥, 4%x, —) is onto so hO(x, 1) = o(x) for some ¢ & Lprxy- In fact
t = 1.(h*(x)) for some 7, € I'(X, T). Thus, there is a clopen neighborhood N, of x
such that T(h“)(1,)(y) = o(y) for all y € N.. The fact that 4* is one-one and X, ¥
are Boolean spaces implies that A*(N, ) is clopen in 4#*(Y) and there is a clopen set
M, in X such that A*(N,)= M, N k*(Y). Using compactness (or the partition
property of Pierce [15]) there exist a partition of X into clopen subsets My,....M, |
and sections 7, € I'(M,, T) such that

Ro(y, 7(h*y)) = a(y)

wherever h*y € M, for i < k. Defining 7 by 7(z) = 7,(z) whenever z & M, i<k, it
follows that 7 € T'(X, T) and T(h¢)7 = 0. Thus, I'(A¢) is onto I'(B) as desired.
To prove the converse, first observe that a surjection 4, restricted to closed elements,
maps Zd() onto Zd(®B) whenever a < w. Thus, (i) follows from BA duality [6, p.
85] while (ii} follows from the definition of 4°.

When the hypothesis @ < w is removed from 5.1, conditions (i) and (ii) no longer
characterize an arbitrary surjection. In general, (i) and (ii) characterize conformal
surjections, i.c., surjections #: % — B such that #(Zd(%)) = 24(38). If a CA U is
regular (in the sense of [4]) every surjection of % onto B is conformal. In particular,
every Lf, is regular. We leave the details of the more general form of 5.1 to the
reader.

The next result shows that “epis are onto” for certain classes of simple CA s,
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LEMMA 5.2. The property ES holds in the following classes:
(1) simple CA;’s;
(2) Cs,for0 <p<a+l<a

PrOOF. (1) Simple monadic algebras are Boolean algebras with a closure operator
¢ defined by cx = 1 if x # 0 and c0 = 0; thus the conclusion follows from the ES
property for BA’s.

(2) In order to show that every epimorphism between members of Cs, is a
surjection, it suffices to consider only inclusion embeddings. Assume A © B C
A(a, p). By the assumptions on p and « the Galois correspondence 2.9 gives
A = A(a, p); and B = A(e, p)y, where H C G. Thus, there exists an automor-
phism 6 of % («, p) that fixes each ¢ € ¥ but moves some element of B. Since 6 and
8 (= identity) agree on U but differ on B, the inclusion is not an epimorphism
whenever ¥ is a proper subalgebra of *B.

The main result of this section is presented next.

THEOREM 5.3. Suppose V is a variety of CA s, @ < w, such that AP and ES hold in
the class of simple members of V. Then ES holds in V.

PrOOF. In view of the duality results [4] and Lemma 5.1, it suffices to show that
every monomorphism in the category of reduced a-spaces dual to V satisfies
properties 5.1(i) and 5.1(ii)). We assume (X, T) and (Y, ©) are sheaves of simple
algebras in V over Boolean spaces X and Y and (h, k) = H: (¥, &) = (X, T) isa
monomorphism.

Suppose hx = hy for some x, y € Y. Since @, €, and T, are simple algebras
in ¥, the amalgamation property implies there exist a simple © in " and monomor-
phisms f,: &, > D and f,: &, » D such that

(1) feoky=f,°k,.
Consider the sheaf (1, ©) over the one-point space {0} = 1 and sheaf morphisms
Ho=(A,p1):(1,9)~(Y,®) and H,=(A,,»):(1,D) > (Y, 8),

where A (0) = x, A (0) =y, po = /,, and v, = /,. The sheaf (1, D) is the a-space
dual to © € V and (1) implies that He H, = H H,. Since H is a monomorphism,
H, = H},, from which x = y. Thus, 4 is one-one and 5.1(i) holds.

Fix x € Y. Since ES holds for the simple algebras of V, in order to show that k.
¥, — & is onto, it suffices to show that k is an epi. Hence, suppose f: ©, — D

~hx

and f;: &, — D for some (simple) D such that
(2) focke=1rek,.
Introduce sheaf morphisms

Hy=Ap):(1,9) > (Y,8) and H =(\,»):(1,9) > (Y, 8),
where A(0) = x, po = f, and »; = f;. From (2) it follows that H e H, = H ° H,, but
since H is a monomorphism this yields H, = H;, from which f, = f,. Thus, we see

that &, is an epi and hence maps onto &,. Since x € Y is arbitrary, 5.1(ii) holds.
This completes the proof of 5.3.
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Some consequences of 5.3 are considered below.
COROLLARY 5.4. ES holds in CA,.

PrOOF. The amalgamation property for BA’s implies AP for the class of simple
CA/’s. The result follows by 5.2(1) and 5.3.

The result 5.4 has also been established by 1. Sain, who has shown that CA,
satisfies the strong amalgamation property.

COROLLARY 5.5. ES holds in 1Gs, where 0 < p < a+ 1 < w. In particular, it
holds in CA, for 0 < p < a < w.

ProOF. By 5.3, 5.2(2), 4.5, and 4.2.
The following corollary was pointed out by H. Andréka and I. Németi.

COROLLARY 5.6. ES holds in the subvariety of CA’s defined by d(a X a) = 0 for
a < w.

ProOOF. The simple algebras of this subvariety are just the simple algebras of
characteristic p, 0 < u < a. Thus, ES for the simple algebras holds by 5.2 and AP
holds by 4.4 and 4.5.

In joint work with H. Andréka and 1. Németi it has been shown that if 1 < a < w,
there exist epimorphisms in CA , which are not surjective. Moreover, 5.2(2) and 5.5
are best possible in the sense that ES fails in the variety 1,Gs, when w > p > o + 1.
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