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COMBINATORTAL TYPES

*
S.D. COMER

Various types of algebraic structures have been used to investi-
gate general properties of abstract languages, for example C[HTJ,
[Hal, C[Crd, and CAGNIJ. The general idea behind algebraic logic
is to associate a suitable algebraic structure, e.g., a cylindric
algebra, with a language (or theory) and to establish properties of
the language (or theory) from algebraic, combinatoric, and/or model-
-theoretic results about the algebraic structures.

The connection between combinatorial schemes and algebraic logic
goes back almost twenty-five years to the construction of nonrepre-
sentable relation algebras from nrojective geometries ( [Jol,CLy1).
Constructions of nonrepresentable cylindric algebras also use some
type of combinatorial scheme. Monk [Mol2 wused the relation al-
gebras derived from projective geometries to show that the class of
representable relation algebras is not finitely axiomatizable. A key
step in the proof that the class of representable cylindric algebras
of dimension #n, #»>3, is not finitely axiomatizable ([Mo21,Mo32)
also uses CA's constructed from projective geometries. Algebras
constructed from other classes of combinatorial systems have been
used to show that the classes of group repre<entable cylindric
algebras and group representable relation algebras are not finitely

axiomatizable { CMcK1, LCo51).

%
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By looking at the proofs of the results cited above it is
clear that they are based on certain model~theoretic properties
of combinatorial systems. Moreover, the specific results cited are
obtained from the combinatorial setting by encoding the combinato-
rial systems into CA's, RA's, etc. The purpose of this paper is
to report on an attempt to isolate the essential combinatorial
facts used and to clarify the role of the coding functors. It is
hoped that once the situation is clearly understood additional
applications of the basic combinatorial results can be made to
structures based on other languages and logics.

In section 1 a group-like multivalued system, called a poly-
group, is introduced as a combinatorial type. These systems abstract
certain properties of combinatorial configurations such as project-
ive geometries and association schemes. A connection is also made
with the notion of a data type (in the sense of Scott [Sc1)
based on a group. In section 2 a coding of polygroups into CAS is
briefly studied. This coding is used to establish Monk’s result
for RCA from a polygroup result in section 3. This particular
result was chosen to illustrate the idea of transferring results
from combinatorial types to algebraic logic because the nonfinite
axiomatizability of RCA has already received attention in some

computer science work (see e.g., [ILJ).

1. COMBINATORIAL TYPES/POLYGROUPS

Various multivalued systems related to algebraic logic have
been considered in [Co41 and £Co53. In this paper, however, we
will restrict attention to a group-like system called a polygroup.
These systems are easily constructed from combinatorial systems
and have the property of being codable in various types of struc-
tures studied in algebraic logic.

. -1
Definition 1.1. A polygroup M 1is a system <M,s, ~,e> where

e€M, 1 s a unary operation on ¥, x*y is a nonempty subset of
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¥ for each a,y6M, and the following axioms hold for all
X,y 2EM:

(2) (xeylez = x+(ye-z)
(11) xee =2 = e°x

(ii1) xeye+z implies yex-z—z and z@y~1-x

For readability a singleton set is identified with its element;
so, for example, « i1s written in (ZZ) in place of {x}. The set-
-valued operation -+ on elements extends in the obvious way to
subsets: namely, for A4,BENM

A*B = [Hab : a4, bER}.
Note that (Z) is an equality of sets.

Examples of polygroups can be found in [Co43 and [Co57.
We cite a few that are relevant to the present paper.

Example 1.2, Double coset algebras. From the group-like nature
of 1.11it is not surprising that the system of all double cosets of
a subgroup H of a group G forms a polygroup. This system is
denoted G//H.

Example 1.3. Lyndon-Prenowitz algebras (CPrl,CLyl). Suppose G
is a projective geometry with the set of points P and I is a
new object, I€P. A Lyndon-Prenowitz algebra (which is a polygroup)
is a system '

Py = <pu{Il, -,“1,I>

where x =¢ and Tw=zeeI= for all x6PU{T} and for x,y6P,
zyvlx,yy 1f x#y

{I,x} if x=y

[The unique line determined by x7#y is denoted xy.3
If the geometry G has dimension 1, i.e., there is only one line

X, Py 1s denoted Py for short.
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Example 1.4, Chromatic polygroups. The class of chromatic poly-
groups play the same role for our combinatorial types that set al-
gebras do in algebraic logic. First we describe a special kind of
edge coloring of a complete graph.

Suppose ¢ is a set with a distinguished element e&C and ¢ is
an involution of (¢ such that z(e)=e. [Think of each element of
¢ except e as a color; e will correspond to the identity rela-
tion.1 A color scheme is a system U = <V5{E&: aeC}> where each

R &Vv? and
a

1) {Ra: atC} s a partition of V? with
Re:{(x,x): xEV}I=Id,

(2) Rc(a):ﬁg fork acc,

(3) for each a&C, x6V, (x,y)eRa for some yev,

"’ ' ., - - - :
4)  for each a, b, c€V, Rcﬂ(Ra,Rb)¢0 implies Rc@;Pa‘Rb.

[The converse operation on V® is denoted Y and relation compo-
sition is denoted | in the axioms above.l In particular, the notion
of a color scheme includes the notion of a homogeneous coherent
configuration (rHi1) and the notion of an association scheme
(CBM1) . Frequently, for ¢ finite we set ¢ = {0,7,...,n} and
e=0.

Define the system

MU = <C—’ .J'—]: e>

where a—Z:C(a) for all a8C and
a*b = {c€C : R =R, | R}
for all a,b6C. Observe that ase=a=e+a and ecara”l for all asc.

In fact, M, is a polygroup called the color algebra (or configu-
ration algebra) of . A polygroup is called chromatic if it is
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isomorphic to the color algebra M, of some scheme U.

In section 3 ultraproducts of polygroups will be needed.
These are defined in the usual way. Suppose Mo=<M.ye s S, e;> for
285 and D is an ultrafilter on S. Then the ultraproduct is

0, My = <I M, v, L e

with e={e}, where éerwﬂ. is given by e(?)=e, for all <€sS.
For a,b,c@HMi,

la},! = B}, I {468 : a,Oi=b JeD.

and
{c}DG{a}D*{b}D iff {65 : cieai'ibi}eD’

There are several ways to consider the class of polygroups as

a category. For polygroups 1_\4_:<M,-,"1, e> and _][:<1V,-,_1,e’> a
function f from M onto N 1is called a special morphism,

denoted f: ¥ -—> N, if, for all w,y,=z6M,

il

(Z) fx =e' Iff x= e,

(i2)  fz6fxefy <ff there exist x',y' with fax'sfe, fy'=fy
and zEx'ey'.

Conditions (i) and (ii) imply (fz)  =fr L.

As in group theory it is often advantageous to describe the
image U of ¥ under f as a "quotient” M//© where © 1is the
"kernel” of f. An equivalence relation © on a polygroup M is
called a conjugation if, for all wx,yeM, (6x) 1=0(x"1) and
0(xy) < (9z) (Oy). A conjugation is special is Oe={e}. Examples of
(special) conjugations are abundant; see C[Co53. For a conjugation
© on ¥ the set of O-classes forms a system M//0 that is again a
polygroup. In [Co53 it was seen that &//60 is chromatic for any
conjugation © on a group G.

Forms of the ususal homomoprhism and isomorphism theorems hold
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for polygroups. In particular,

Proposition 1.5, If f <s a special morphism of M onto W,
then O={(x,y)emM®: fx=fy} <e a special conjugation on M and
N M//0.

Multivalued systems are related to the theory of semantic
domains (alias, continuous posets or data types) developed by
Scott [Sci. As a final example in this section we indicate the

connection between polygroups and domains on groups.

Example 1.6.  Group domains. For basic information about domains
see [Scl. We suppose G 1is a set of tokens and 0 1is a neigh-
borhood system on G. It is convenient to think of ¢ as a set of
data and D as a specifying information about the data. The set
|D| of all filters of D is partially ordered by an approximabil-
ity relation k: for «,y€|D|, Ly <ff y<Swx. Maps between
sets of tokens give raise to approximable maps between domains. In
general, operations on G will induce (partial) operations on |D].

In order to begin to understand the relationship between opera-
tions on ¢ and operations on |P| it is natural to first consider
a simple situation. We suppose (G,+,e) is a group. It is natural
to assume there is some relationship between the group operation -
and a neighborhood system 0 on G. If D specifies information
about the group, it should at least contain all information about
which elements can be distinguished.

Given D consider the equivalence relation @D; namely, for
a, beG
at’b  iff VXED(aEX <—==> bEX).
That is, two elements are related if they are indistinguishable
given the information provided by 0.
If D contains all the information about distinguishing

D

elements of &, then ©0” should satisfy the properties (1),(2)

and (3) below:
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(1) 26 —> w=e,

{(2) x@vy — x_z®vy~],

(3) (@Dm)(QDy) 18 a union of @D—classes (or equivalently,
Olxy) S (Oy)(By).)

Property (1) says that e is a distinguished element while (2)

says that if two elements are distinguishable, so are theirinverses.
Property (3) says that the result of multiplying blocks of indis-
tinguishable elements will not distinguish any additional elements.
Of course, {1)-(3) means that @D is a special conjugation on
(G,,e). How is G/VOD related to |D] in this case?

Let t(|D|) denote the set of all total elements of [D/, i.e.,
the set of maximal filters. In |D| the "group” operation * may not
always produce a total element; for xz,y€t(|D|) x+y will usually
just approximate a set of total elements. Thus, £(|D|) may be
regarded as a multivalued algebra. The relationship between G//0
and t(|D|) is now straightforward.

Proposition If a group G supports a complete domain D (Z.e.,
D is closed under arbitrary intersections) that satisfies (1), (2)
and (3), then the set of total elements t(|D|) forms a polygroup
isomorphic to G//@p.

Property (1) is not essential in the proposition above, i.e.,
if D only satisfies (2) and (3), #(|D|) is still a polygroup
and, of course, isomorphic to the quotient G//@D.

Figures 1 and 2 give [D]| and G//@D for a specific example
where =7, and D={ {0}, (1,4}, {2,3}, {0,1,4}, {0,2,3},
{1,2,3,4},G}. Each filter on D is principal. Let I denote the

filter generated by I and let a={7,4}, »={4,3F and e={0}.
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Figure 1

Approximation relation on |D]

* 1l e a b

e a b
a i a eb ab
b b ab ea

Figure 2
Polygroup G//0

2. CODING POLYGROUPS INTO CA'S

This section focuses on a functor that codes polygroups into
CAS'S. It is a special case of the construction in [Col1 which
applies to all multivalued loops.

For a polygroup @?<A@-,~Z,e> let G={(a,b,c)eM®: c€a-b} and
Sb(G) denote the collection of all subsets of G. Let BCM1 denote

the structure

BLMI = <8b(G),U,N,~,0, G’ci’dij>i,j<3

where, for X <G,

c. X = {yeG : y;~c, for some 26X}

and
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G if i=j

2 o, {(e,ere)} if {1,4,K}=3.

It is easy to check that
Proposition 2.1. BIM1 <s a Ch 5

If e is the Lyndon-Prenowitz algebra of 1.2, BRI is (iso~
morphic to) the Ch g Monk associated with the geometry G

(cf., CMo23, [Col32

Proposition 2.2. BL-1 ©s a contravariant functor that weakly

preserves ultraproducts. That is,

(1) M > N <ff BLN] > BLM1 is a completely additive
embedding,

(2) M, BM.1 >——=> BUI, M.].

Proof. (1). By 1.5 we may assume N=M//® and M ———> I is

the natural quotient map. Each atom of  BCM//01 corresponds to a
triple (BO’BJ—'BZ) in the graph of * on M//6. To this atom
associate

o({(B),B,,B,)}) = G N (ByxB xBy).

The function ¢ on atoms extends to a unique, completely additive
embedding of BCM//0] into BrM1. Conversely, suppose ¢ is a com-
plete embedding of BLNI into BCM1. Define f: ¥ ——> § for afl,
by setting f(a) equal to the unique HEN such that
(a,e,a)Ee{(b,e,b)}. Since (p(d02):d02 and ¢ 1is completely additive,
f is well-defined with domf=M. It is not hard to check that Ff is

a special morphism of ¥ onto W.

(2) . Suppose xGH@EMij, a,b, cGIIMi and D is an ultrafilter on the
index set. Define ¢ on N,BCM.] by

({a}D, {»}

D> {c}D)&p({x}D iff  {i: (ai,bi,ci)exi}eD

It is straightforward to check that ¢ is the desired embedding.
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A CA, is called <ntegral -if it satisfies

Y. = s =
x( x#o epey BEC 0, EEC C,H BT 1).

From 1.1 it is easy to establish that
Lemma 2.3. For a polygroup M, BLMI <s integral.

As a consequence of 2.3 each BIMI is simple.
This simplifies the question of when BCM] is a representable (4

The notion of a cylindric set algebra was extensively studied
in CHMTAN?J. For a set 7V and <,7<3 let

7

- 3, —
Dij = {g873%; xvij}

and, for x< 1%,

C, X = {yevd: (Ixex) (Yk#7) xk:yk)} .

Recall that a 3-dimensional cylindric set algebra with base V (a Cs

for short) is a system <4,U,N,n,0,1, C D’LJ ,i<3 where <4,U,0,n,07>
is a Boolean field of subsets of 7 w1th unit 7=V® that contains
Dij for all <,j<3 and is closed under C; for <<3. Any subdirect
product of set algebras is called (set) representable (an RCA 3) A
simple algebra will be representable if it is isomorphic to a (s g If
there is a completely additive isomorphism from a complete atomic CAg
onto a set algebra whose universe is a complete field of subsets, we

say the CA; has a complete representation.

The next result indicates one reason that chromatic polygroups

are important.

Proposition 2.4. For a polygroup M BIM1 has a complete represen-
tation <f, and only <f, M is chromatic.

Proof. First, assume M is chromatic, say M=, for a color
scheme U=<V, {Ra:aeM}>. An embedding ¢ of BIMJ into a set al-
gebra with base vV 1is defined for an atom {(a,b,c)} of BLM 3 by
o({(a,b,e)}) = {(x,y,z)eva:y}?cx, 2Ry, g,/ffaz} and extended by addi-

tive to all of QEMUZI. For a triple of colors (a,b,c) where cEa.b,
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geometrically ¢ represents the atom associated with (a,b,c) as

the set of triples of points in ¥V which determine a triangle with

\b

an edge coloring (a,b,c).

The sets o({(a,b,e)}) for (a,b,c)6G give a partition of V?® into
nonempty subsets, so ¢ extends to a completely additive Boolean
isomorphism. It is straightforward to check that @(dij) = Dij and
that Cim(X):o(ciX) for all X < G. Converselly, suppose ¢ 1is a
complete representation of BCM1 into a set algebra with base V.

For atM the relation H& < V is defined as

R, = {(z,y)eV ¢ (y,x,y)60{(a,e,all}l.

Properties (1),(2) and (3) in the definition of a color scheme (see
1.4) easily follow from the fact ¢ 1is a completely additive iso-
morphism and @(d02):002.
Before verifying property (4) of 1.4 we observe.

Lemma The following are equivalent:

(1) cGasb in M,

(i) eplla,e,a)}ne (d {(b,e,b)})ﬂcg{(e,e,c)} Z 0,

12°%2

(tid) Cyolla,e,a) N0, (D (b,e,b)})NCo0i(e,e,0)} # 0,

12°Cg0l
(7iv) Rcﬂ(Ra!Rb) 70,

Now it follows that <V,{Ra : a€M}> is a color scheme since (iii)
of the lemma is equivalent to
ColCpollase,a)InC (D, ,NCy0l(b,e,b)}))2, p{lc,e,c)}

which is equivalent to R SR IRb The lemma above also shows that
M 1is isomorphic to the color algebra of the scheme just constructed.

Several of the constructions and results of this section hold
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more generally. In particular the construction of BCMI and the
facts 2.1, 2.2 and 2.3 all hold when ¥ is a multivalued loop.
Moreover, in a sense, multivalued loops allow the complete descrip-
tion of all integral 0A3's. In [Co31 the notion of an adjunction
of a CA, was introduced and it was shown that every integral CA
is embeddable in an adjunction of the complex algebra BLM1 of
some multivalued loop M. Since most of the known nonrepresentable
CAS'S are integral the description of all such algebras is fairly
important. We leave the development of these remarks to a later

publication.

3. NONFINITE AXTOMATIZABILITY

A model-theoretic result is established for the class’of chro-
matic polygroups in 3.5. From this result and the coding properties
of BC-]1 Monk's result for RCAS'S will be derived.

First, however, we discuss the language for polygroups. This
language contains a constant e, a unary operation ‘], a binary
operation symbol », and binary relation €. Terms and formulas are
developed in the usual way except that only variables and constants
are allowed for o in an expression of the form o€ 1. The seman-
tics for the language can be easily understood by regarding the
language as halfway between an operation language and a relational
language. More precisely, an ordinary binary operation, say f, can
be regarded as a 3-place relation F so that z=f(xz,y) is equiva-
lent to F(x,y,z). When the operation f is given in the relation

form, two additional axioms are added to the logic; namely,
(2) Vx, yaz Fle,y,=z)
(22) Ne,y,z,ul Fle,y,z) & Flx,y,u) =—=> z=u).
When a language contains a multivalued operation f, we can also
regard f as a ternary relation F, however, in this instance only

axiom (i) is added to the logical axioms. In this way, a language

with multivalued operations can be regarded as a svecial relational
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language. In particular, it is clear how to interpret formulas in
structures and that standard model-theoretic arguments can be used.

For example, we have

Los’ theotem For any sentence © 1in the language of polygroups

and any ultroproduct N, M, of polygroups,

M, =0 iff {2 W, b= ®}&D.

It follows from Los' Theorem that (pseudo) elementary classes
(in particular, elementary classes) are closed under ultraproducts.
For a pair of pseudo elementary classes K and K’ with X2 K', X'
is finitely awiomatizable over K if there exist a finite set 1
of sentences such that XK'=k nuMd(r). The following standard con-
sequence of Los’ Theorem is basic in a discussion of finite axiom-

atizability.

Lemma3.1. If K and K' are pseudo elementary classes, K2K',
such that K' ie finitely axiematizable over K, then KVK' (the
complement of K' <in K) is closed under ultraproducts.

It is worthwhile to note which classes introduced in section 1
are (pseudo) elementary. Obviously the class of polygroups is

elementary.

Lemma 3.2. (1) The class of chromatic polygroups is a pseudo-
elementary class.
(2) The class of Lyndon-Prenowitz algebras PG for which G has
dimension 1 is an elementary class.

Proof. (1) A chromatic polygroup is a reduct of a system
<Mg-,_1,e,V,R> for which <m,, 1
R: M —> Sh(V?) has the properties that <V,{R(a): a€M}> 1is a

,e> is a polygroup and

color scheme and for all a,b,ceM,

cBa*b if R(e)< R(a)|R(D).

(2). If a geometry has dimension 1 (i.e., there is only one line

X), zy=X whenever ax#y. Using this fact the definition of the
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operations of f&

The following important result about the algebras Pg was

in Example 1.3 are clearly elementary.

proved by Lyndon [Ly] who expressed the ideas in the language
of relation algebras. The present terminology makes the ideas

clearer.

Theorem 3.3.. 4 geometry G <is embeddable as a hyperplane in a

geometry of one higher dimension 1ff Pq 18 chromatiec.

Proof. Suppose G, whose point set is P, is embeddable in a
geometry with a point set # of one higher dimension. A color
scheme on V=HvwP 1is constructed using the set {I}U P of colors
by setting RI:{(x,x) : 268V} and, for pep,

Eb = {(x,y)6V?%: x#y & pexy}.

Properties (1),(2) and (3) in 1.4 are clear; for (4) the hypothesis
Bcr1(Ra}Rb)¢0 implies that «,b and ¢ are collinear from which (4)
follows by the Pasch axiom. It is also straightforward to show
that the color algebra of the scheme above is isomorphic to Pq-
For the converse, we assume that Es is isomorphic to the color
algebra of a scheme <V,{Eb : pePULT}H}> where PNYV=0 and build a
geometry H on H=PUV.The lines of H are either

(i) 1lines of G, or
(ii) sets IL(x,p)={x,p}U{yeV : (x,y)eRp} where «6V and peP.

The verification that H 1is a projective geometry with G as a

hyperplane is left to the reader.

Corollary 3.4. (Lyndon) (7). If dim G>2 or G s a
Desarguesian plane, then P s chromatic.
(2). PBg ts mot chromatic if G s a nonDesarguessian plane.
(3). For G (with dimension 1) a line containing wn+l points, I8

s chromatic iff there exist a projective plane with order n.

Theorem 3.5.  The class of nonchromatic polygroups is not

elosed under ultraproducts.
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Proof. By the Bruck-Ryser theorem L[BRI there exist an in-
finite set of positive integers ny<Tg<a.. for which there is no
projective plane with order ne For each n. in this set let P
denote the Lyndon-Prenowitz algebra of the 1-dimensional geometry
with n;+1 points on a line. By 3.4, P, is not chromatic.
However, for any nonprincipal ultrafilter D on the set
{nz,ng,...} the ultraproduct HD P, is isomorphic to By for an
infinite set X by 3.2(2). Thus, n, P, is chromatic by 3.4
since projective planes of every infinite cardinality exist.

The result above is essentially to combinatorial/model-theoret-
ic nucleus of Monk’s work [Mo22. It leads immediately to the

promised result for RCA 4.

Theorem 3.6, (CMo21) RCA, <s not finitely axiomatizable.

Proof. By 3.1 it suffices to show the complement of RCA is
not closed under ultraproducts. Using 3.5 there exist a collection
of nonchromatic finite polygroups Pi and a nonprincipal ultra-
filter D such that n, P, is chromatic. By 2.2 and 2.4
M, BCP.1 is in RCA while 2.4 implies that each BCP.J is not

representable.

4, CONCLUDING REMARKS

In the previous section we saw that the nonfinite axiomatizab-
ility of RCA, was obtained from a model-theoretic property of
chromatic polygroups using a coding BC-1. Other results of the
same type may be obtained.

In [Co53 a functor AC-1 from polygroups into relation al-
gebras (RA's) was developed with properties analogous to 2.1,
2.2, 2.3 and 2.4. By an argument similar to the one given in 3.6,
using Arf-3, Theorem 3.5 yields the following result of Monk
tMol3.

Theorem 4.1. The class RRA of representable relation

algebras is not finitely axiomatizable.
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Let Q(Group) denote the class of all polygroups isomorphic

to quotients G//& of a group & modulo a conjugation © and let

d (Group) denote the subclass of @(Group) obtained by using

special conjugations (see [Co53). An analysis of the argument

in

[McK1 vyields.

Theorem 4.2.  There is an ultraproduct of finite polygroups

from Q(Group)’st(Group) that is in QS(Group).

McKenzie'’s vresult [McK1 that GRA is not finitely axiom-

atizable is a consequence of 4.2 uisng A4C~1 while the result

announced in CCo21 follows from 4.2 using Br-1 as in the proof

of 3.6. In view of the connection (see 1.6) between system of the

type G//© and group domains it is likely that 4.2 will be useful

in the study of axiomatizability of certain domains.
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