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Abstract: THe notion of a dimension stable poset is introdu-.
ced and the Mminimal members of this class are investigated: The
minimal stable posets of dimension 2 are completely described and
the general crowns which are minimal stablg are determined. In
particular, there are .an infinite' humbe?r' of minimal stable posets
for each dimension greater than 1. :

Key words: Poset, linear extension, dimension, crown, gree-
dy, stable

Classification: Primary 06A10
Secondary 06A05

1. Introduction. Throughout we assume that P is a finite'po~
set. The underlying set of a poset P will alsp be denoted by P
while the order relation is written as &£ (or, as £ if there
is no confusion). A.collection € of 1inear'extensions of P whose
in{ersection is the order’relation on P is called a réalizer of
P. The dimension of P, introduced by Dushnik and Miller [1) and
written as dim(P), is defined as the minimum size of a realizer
of P.

The class of general crowns Sﬁ was introduced in Trotter [3].
These posets will be considered in section 4. For n,kz 0 the crown
Sﬁ is defined as a poset of height 1 with n+K maximal elements
a&,...,an+k and n+k minimal elements bi""’bn+k' The qrdering in

‘Sn is defined by by< ay iff jg{i,i+1,. .. i+kt. (Subscripts are
added modulo n+k.) The set of maximal elements is denoted by A
and the set of all minimal elements is denoted by B. For beB,
let I(b) denote the set of all a € A incomparable to b. For aeA
the set I(a) is defined dually. Note that |I(a)|={I(b)|=k+1 for
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all ae A and be B.

A point x in a poset P is unstable if dim(P-{x})< dim(P).
A poset is Calledyirredggigkg if every point in it is unstable.
Irreducible posets have been extensively studied; in particular,
the crowns that are irreducible are described in [3J. Posets with
a "small" amount of unstability seem to have been neglected. We

call a poset P (dimension) stable if it has no unsté%le'points.

A stable poset is d-stable if it haskdimensfqn d. The class of
d-stable posets is large. Section 2 contains some simple observa-
tions about the class of d-stahble posets. In particular, the

class is determined by its minimal members, that is, d-stable po-
sets for which the removal of some element produces a poset that
is not d-stable. We say that a poset is minimal stable if it is

a stable poset such that removing some pair of elements lowers
‘the dimension. In sections 3 and 4 we describe the minimal 2-stab-
le posets and determine thes-crowns Sﬁ that are minimal stabLé.

2. Stable posets. 1In this section we initiate a study of
d-stable posets. The first result follows immediately from the
definitions. It says that the class of stable posets is a fiiter
(that is an upward clesed subset) in the poset of all isomorphism
t;DBS of dimension d posets and that this filter is generated by

the minimal stable posets..

Proposition 1. (1) A poset of dimension d that extends a
d-stable poset is d-stable.
(z) Every d-stable poset contains a minimal d-stable poset.

The next goal is to %how that every poset is embeddeble in
a stable poset. The following notation is heeded for the const-
ruction. For xeP, let L(x) denote the set of sll elements in. P
covered by x and let U(x) denote the set of elements in P which
cover x. The lemma below gives properties of an extension of P
obtained by adding a new element to act like an old one.

Lemma 1. Suppose x is\a~point in a poset P and x  is a new
symbol not in P. Form a poset P(x) with universe PU{x '} and order
PU(L(X)><{x'})U({x'}xxu(x)). Then

(1) P(x) is a "conservative" extension of P, i.e., for a,be P,

relation generated by £

agap(x)b iff a épb.
(2) if dim(P)> 2, dim P=dim P(x).
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Proof. (1) is clear. (2) Removing the new element x_ from
each linear extension in a realizer for P(x) produces a realizer
for P by (1). Thus, dim P£dim P(x). Now, suppose {Ll,...,LdE is
a minimal realizer for P where d=dim(P)z> 2. Form Li from L, by
replacing x in Li by either x, x" or x, x making sure that each
.pair is used at least once. (This is possible since dZ2.) Cle~..
arly each Li is a linear extension of ﬁ%P(x)' Now suppose a,b & P(x)
and (a,b) & éP(x}' If a,beP, then a is over b in some L,, hence
in some Li. If £a,b¥=4x,x % then, by the definitionkof the exten-
sions, a is over b in some L. If a=x  and x&beP, it follows
that (x;b)¢ &g )
over b in %iv The case of be=x is similar, so {Li,...,Lé% is a
realizer for P(x) and dim P=dim P(x). 0

So, x is over b in some Li' Hence, x and x  are

Lemma 2. If x is an unstable element in P, dim(P)2 2 and y
is unstable in P(x), then y is unstable in P and y==x.

Proof. By Lemme 1, if y is unstable in P(x), y+x and y:kx';
so y is unstable in P. U

Proposition 2. If a poset is not stable, it is embeddable

in a minimal stable poset.

Proof. The result is clear for P with dim(P)=1 since such
a poset is stable if |P|2z 2. For dim(P)>2 and P not stable, the
result follows by iterating the construction in Lemma 1. Inducti-
on on the number of unstable elements in P.is justified by Lemma
2.. 0

Note that the construction in femma 1 can also be used to
show that every finite poset has an infinite number of stable

extensions.

3. Minimal 2-stable posets. In this section we describe the

minimal stable posets of dimension 2. We begin the classification
by identifying special posets. A poset 1is called absolute minimal
stable if it is minimal stable and no proper subposet is stable.

For examplé, all of the posets in Fig. 1 are minimal 2-stable;
however, 0 and R are not absolute 'since they contain P3 as a pro-
per subposet. ’ ‘

The next result implies that Pl’ PZ’ P. and P4 are the only

4
absolute minimal 2-stable posets.

- 129 -



Pragositidn 3. Every minimal Z-stable poset contains one
of Pl’ PZ’ P3 or P[“. ;

Proof. Suppose P is a minimal 2-stable poset. If P contains
can antichain of size £ 3, then P contains Pl' Otherwise, every
antichain in P has size 2. If P contains only one antichain, de-
. leting one of its elements reduces the dimension. So P must have
at least 2 antichains (of size 2), call one'A and another 8,
Every element in A is comparable with some element in 8. (cher»,
wise, adding it to B creates an antichain of size 3.) If each
slement in A is comparable with‘exactly one element aof B, then P
contains P,. If some element of A is comparable with both ele-
ments of B, then P contains Pj or PA‘ jw

The classification of all minimal 2-stable posets is obtain-
ed by combining an absolute minimal stable poset with a chain in
various ways. Six infinite families result. They can he defined
using the notion of an ordinal sum of posets (see f23). In parti-
cular, let pn denote an n-element chain, A ® B denote the linear
sum of A and B, and.A+B denote the disjoint sum of A and B. Thus,
for example, (k ® (n+1) @ m)+1 (which is A(Q,k,n,m,0) below) is
the poset QO in Fig. 2. The'pOﬁets Qi’wm2’ and Q3 are ordinal
sums of Q, Pj and R, respectively. > '

We now define several infinite families of posets:

(i) . Alr,k Jhum,s)=r @& (K @ (nH)@ m)+1) @ s where nz1 and

r,s,m,k 0.

(i1) B(r,k,n,m,s)= I @})Q (k n m)@ 5 wht—'z‘e K,mz1 and n,r,s 20

(ii1) C(k,n,m)=k @(ﬂ+£) @ m where nz 7 and k,m2 0,

(iv) 0(r,n,m,s)=r & Uy (m, m)®s where n,m z1 and r,520

(v) E(r,k,n,m s.) T ® (<+1)@n ® (n+1)®s where k,n,mz1 and
r,8z0

(vi) F(r,k,n,m,s)= @ 05k,n, m)@ s where n,r,s20 and k,m2 1.

NoLlce that each class of posets, except D, is closed under
duals. The posets of “type A, 8, C, D, E and F listed -above are
all minimal 2-stable. The main result of this section is' that the
list ‘above is complete.

; Proposition 4. Suppose P is a minimal 2-stable poset.
(1) If P contains P
or type B with n»0.

1 it is isomorphic to a poset of type A

(2) If P contains PZ’ but not Pj, it is 1sommphlc to a pmset
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of type C.

(3) 1If P contains P3, but neither Pl nor PA’ it is isamofphic to
a poset of type D (or its dual), a poset of type £, or a poset of
type B with n=0.

(4)" If P contains P,, it is isomorphic to a poset of type F.

Proof. (1) If P is minimal stable and contains an antichain
of size 3, two elements from this antichain must be removed to
drop the dimension. The result will be & chain. Thus, P can be
constructed from a ‘chain L by adjoining a two element antichain
{x,y}¥ in such a way that both x and y are incomparable to some
elemegnt in L. There are various possibilities depending upén whe-
ther or not each of x and y is incomparable from all elements in
L, below some element in L, ahove some element in L, or both

The table below enumerates the joint possibilitiés where the ent-
ry corresponding to a row and column is the typé of poset speci-
fied by the Eanditions: We write x | L to mean that x is incompa-
rable with all elements of L, X<l to mean that x<c for some
cel, etc. In 8ll cases n>0.

!

L« x <L

The proof of parts (2), (3) and €4) is similar. T

4.

Minimal stable crowns,

B(O,k,n,m,s)

given which determine when the crown

B{r,k,n,m,0)

g is irreducible.

1 x 0L X L x> 1
y il L AC0,0,n,0,0)  A(0,0,n,m,0)  A(O,k,n,0,0) A(O,k,p,m,o)
; ; ACD,k,n,m,s
y< L A(U,O,ﬁ,m,ﬂ) A(U,U,n,m,s)‘ B(U,k,n,Q,O) B%O,k:gzmzzg
L<y ACO,k,n,0,0)  B(0,k,n,m,0) A(r,k,n,0,0) . SEE’&’E’E’S%
. . EAARERERLE]
L<y< L] ACOK,n,m,0) A(O,k,n,m,s A(r,k,n,m,0)  A(r,k,n,m,s)

B(r,k,n,m,s)

In [3] conditions on n and k are

1 5K is

not irreducible, it'is stable! (This follows from the observation

that dim(Sﬁm{x})ﬂdim(Sﬁ) for all x whenever it holds for sgme x;

g result which is a conseguence of the fact that the automorphism

group of

Sﬁ is ‘trangitive on the minimal’'(maximal) elements.) In

this section we determine which crowns are.minimal stable.

Ed

.

Proposition 5. A crown Sﬁ is a minimal d—stabie‘poset if and

only

(1) k=1 and n+l=3g (so d=2qg),
(2) n+k=q(k+2)+2 (s d=2g+1),
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(3) n+k:Q(K+2)+[(k+2)/23+l where k is an even positive integer
(so d=2qg+2).

{ & .

Proof. The arguments are only sketched since the technigues
are very similar to those used in “I3) to characterize the irredu-
cible crowns.

If Sﬁ is a minimal d-stable poset, dim(Ssm {x,y§)=dim(SE)—l
for some x, y. Using the observation that, for crowns,: stable is
the same as not irreducible, and comparing the weights of the po-
sets involved with thie weights of linear extensions (as in Theo-
rem 5.8 of [3)) it follows that one of the following four condi-
tions must hold: )

(i) n+k=g(k+2) where k=1 or k=2,

(1) nk=a(k+2)+2,

(iii) n+k= q(k+2)+T<k+?)/23+1 where k is a pm%ltlve even

integer,

(iv)  nek=g(k+2)+1(k+2)/23+2

We next observe that in case (i) k=2 is impossible and case
(1v) is also lmprblble The argument for k=2 in (i) and for k
even and pooltlve in (iv) is similar to the proof of Theorem 5.6
of 3] in the k even and positive case. This works because if
Bﬁm +x,y% lowers the dimension in these cases, each linear exten-
sion in a minimal realizer must have maximal possible weight.
This is not the case when k is odd and positive in (iv), but a
modification of the argument still works. Theré are four casés
to be considered depending upon whether x, y are both minimal
(maximal) in Sﬁ or one of each and whether |I(x)n I{y)| is 0 or
1. For sake of this sketch we assume x,y ¢ B. Assuming that
Sﬁ« {x,y}¥ has a realizer XLl""’L2q+1} it is possible to show
(along the lines of the argument in«Theorem 5.6 of [3Dthere exists
enother realizer Li L?q’L2q+1‘ where each Li has maximal
possible weight and L2q+1 must place t+1s[(k+2)/2) elements of B
over k+l elements of A. This is impossible since each be B is in-
comparable with a different subset of A of size k+1.

It remains to see that SE is minimal stable in case (i)
with k=1 and’in cases (ii) and (1ii). Crown% Sk in (i) with k=1

have the form S +2 where g zZ 1. Since 83q+2 isg (2q+2) stable it

3q+
suffices to see that the poset P obtained by = removing d3q 2 and

a3q+3 has dimension 2q+1. If XLl,Lz,;. L2q+2§ is the realizer
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for S%q+2 constructed on pp. 90-91 of [3] and if L extends

Laysbsg.19P3g:830417P3g-13
(remember, in 31, larger elements are listed before smaller ones),
the chains &Ll,LB,LA,...,qu,L,L2q+2§ restrict to a realizer of‘P
with size 2qg+l. It follows that S%ﬁ+2 is minimal stable.
Case (ii) is similar.‘It suffices to construct a realizer of
size .2q for the poset obtained from Sﬁ by removihg k-1 and
Again, using the notation from pp. 90-91 of £33, such a rea-

l,LB,La,...,LZq,L2q+2§.
To show. that Sﬁ is a minimal (2q+2)-stable poset where n, k

ek
lizer is 4L

are given in case (iii) the construction in Theorem 4.8 of [3) is
employed. It suffices to construct 2g+1 linear extensions that
n+k’bn+t} where k=2t. Th is is done in the following
way. Partition A into sets Aj and IjAas in the argument cited

realize SE—{a

and form linear extensions LZ""’L2q+1 corresponding to
12,...,I2q+1. Now form L~ by ordering Il by increasing subscripts,

placing the last t+1 elements of A above these elements in

g+l
decreasing subscript .order, and finally inserting the elements
of I(al) in the list as high as allowed by the ‘ordering on Sﬁt.
The collection &L',LZ,..,,L2q+1§ is the desired realizer. This

completes the proof of Proposition 5.

From the number-theoretic conditions in Proposition 5 we ob-

tain
Corollary. There exist an infinite number of minimai [a I
stable posets for each d 23, . ‘

Other infinite families of minimal stable posets can be ob-
- tained from non-minimal stable SE "s by removing one, two,...
elements. It may be worth classifying these clipped crowns.
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