Algebra Universalis, 25 (1988) 131-146 0002-5240/88/020131-16$01.50 + 0.20/0
© 1988 Birkhduser Verlag, Basel

An abstract theory of invertible relations

Lesie ConN and STepHEN D. COMER'

The purpose of this paper is to present certain results arising from a study of
quasi-orderings (pre-orderings). We show that to each relation R < X X Y there
are associated unique largest quasi-orderings 7,(R) on X and 7,(R) on Y such
that 7, (R)° R o, (R) = R; and we present formulas for these quasi-orderings. For
a fixed pair of quasi-orders s, and s, we characterize the invertible relations
(with respect to the units 77, and 7,) in terms of isomorphisms between *r, and
*m,, where *m; is the partial ordering naturally induced by ;. In particular we
show that the set of invertible relations with 7, = 7, = 7 is a group isomorphic to
the group Aut (*;r) of automorphisms of *7z. We present these results in sections
1-3 in the framework of a general relation algebra.

In section 4 we describe an anti-isomorphism between the lattice of quasi-
orderings on a set X and a certain lattice of topologies on X. Using this
anti-isomorphism, we obtain a characterization of the set of relations Rc X XY
with fixed left and right units 7, and 7.

1. Quasi-ordered elements in a relation algebra

The notion of a relation algebra can be defined in several ways. We prefer the
definition given in Jonsson-Tarski [4] (Def. 4.1) augmented by the inclusion of
complementation as a fundamental operation. A relation algebra (a RA for
short) is an algebra A = (A, 5, 1’, V) where

(1) Ay= (A, +,0,-,1, ") is a Boolean algebra,
(2) x;(y;2)=(x;y);zforallx, y, zeA,
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3) I'sx=x=x;1'"forallxe A,
(4) the conditions (x;y)-z=0, (x”;2z)-y =0, and (z;y") - x =0 are equiv-
alent for all x, y, z € A.

A standard example of a relation algebra is the algebra %e(X) =
(Sb(X?),°, Iy, ~") of all binary relations on a set X. Sb(X?) is the Boolean
algebra of all subsets of X?, Iy is the identity relation on X, and, for all
R, S < X*, the composition operation © and the inverse operation ! are defined
b v
g RoS = {(x, y):HA;z(sz and zSy)}
R™'={(x,y):(y,x)eR}.

The operations o, and the element Iy correspond to the symbols ;, ¥ and 1’ in
the relation algebra definition. More information on relation algebras can be
obtained from Chin—Tarski [2], Jénsson [3], or Jénsson—Tarski [4]. Most of the
arithmetic properties used below are immediate from the axioms. The following
property will be used in the proof of 3.5.

—1

LEMMA 1.1 (Chin-Tarski [2], 2.7). (x;y) -z =x;((x";z) - y).

We call an element x in a relation-algebra Yl an equivalence element if x ;x <x,
x”=x and 1" =x. This notion is stronger than the notion defined in [2], [3], and
[4] because we require 1’ < x.

DEFINITION 1.2. If e is an equivalence element in a RA %, an element a in
9 is called

(i) a quasi-order element with respect to e if a;a <a and e = a.
(ii) a partial order element with respect to e if a;a<a, e<a, anda -a” <e.

Note that if a is a quasi-order (partial order) element with respect to e, then
a,a=a. A quasi-order (partial order) element with respect to 1’ is called a
quasi-order ( partial order) element in .

An equivalence element e in a RA ¥ gives rise to another RA called a factor
algebra (see [3]) that is denoted as e ;e. The universe of the factor algebra is

e;Ase={ejase;acA}={xeA:x=¢;x;e}.

The operations ;, , +, and - are the same as in 9, the unitise;1;e, the identity is
e, and the complement of x is x™ - (¢;1;e). An equivalence element E in %e(X)
is an equivalence relation on X. The factor algebra E;%(X);E is naturally
isomorphic to Re(X/E) where X/E is the set of E-blocks.
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Because a;a =a and e =<a imply a =e;a;e, the quasi-order (partial order)
elements with respect to e in a RA ¥ are exactly the quasi-order (partial order)
elements in ¢ ;U ;e. Hence a quasi-order (partial order) element g with respect to
an equivalence element E in Re(X) is exactly a quasi-ordered relation (partially
ordered relation) on the set X/E.

The following result is a relation algebra version of the construction of a
partial ordering from a quasi-ordering.

LEMMA 1.3. If q is a quasi-order element in a RA N and e = q - q“, then e is
an equivalence element and q is a partial order element with respect to e, i.e., qis a
partial order element in e ;U ;e.

DEFINITION 1.4. For an element a in a RA .
(i) the element m,(a) = (a™ ;a")” is called the left unit of a.
(ii) the element 7,(a) = (a”;a™)~ is called the right unit of a.

If the operation 'is defined by a'=a"~ (cf., [2], p. 348), the formulas in 1.4
are equivalent to

ma)=(a;a")" and m.(a)=(a’;a)".
It is easily seen that

”l(a_) = ﬂl(a)ui nr(aw) = ﬂr(a)uy
”I(au) = JTr(a)u) ﬂ"r(au) = ﬂl(a)U’

aa)=m,(a) and m,(a")=m(a).

The next lemma shows that the left unit m,(a) (right unit 7,(a)) is the unique
left (right) residual of a over a in the sense of Birkhoff [1].

LEMMA 1.5. (i) m,(a) is the unique largest solution x to x ;a = a.
(ii) m,.(a) is the unique largest solution x to a ;x = a.

Proof. (i) Using (4) in the RA definition one obtains
() x;a=a iff x=(a ;a%)".
Thus, for any solution x to x;a=a, x =m(a). On the other hand, (5) gives

1"=(@ ;a%)" and a=1";a=(a";a")";a =a so m(a) is a solution to x;a =a.
The proof of (ii) is similar. O
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The next result shows that the units are quasi-order elements and this, in turn,
leads to a characterization of quasi-order elements.

LEMMA 1.6. For every element a in a RA m,(a) and x.(a) are quasi-order
elements.

Proof. Lemma 1.5(i) implies 1’ = (@) and m,(a);a = a. Abbreviating m,(a)
as 7, it follows that

a” - (mymia)=a" - (w;a)=a" -a=0

because 7;a=a. Hence (7;7) - (a”;a”)=0 and thus m;7 < using (4). The
proof that =z,(a) is a quasi-order element is similar. [

COROLLARY 1.7. The following are equivalent for each a in a RA:
(i) a is a quasi-order element,

(ii) a = m,(a).

(iii) a =z, (a).

Proof. By 1.6, (ii))=(i). Now, assume (i). Then a;a =<a is equivalent to
a=m(a). Also, 1'=a implies 1'=4a", so a"=a";1'=a" ;4" which yields
m(a)=(a";a")” =a” ~ =a. The proof that (i) < (iii) is similar. [

2. Invertible relations

Let Q(2A) denote the collection of all quasi-order elements in a complete RA
. Note that Q(U) is closed under arbitrary meets so Q() forms a complete
lattice which is a meet-sublattice of 2l. It is also clear that the map x+>x" is an
involution of Q(A). We extend the operations ~, “, and " of a relation algebra A
to subsets of ¥ in the obvious way; for example, X~ = {x ™ :x € X} whenever X is
a subset of U. For g4, ¢, € Q(A), let

R(q1, g2) ={a e A:m(a)=q,, m.(a) = q.}.

With this notation, the identities following 1.4 show that R(q,, ¢.)~ = R(qY, q5),
R(q1, ¢2)” =R(q5, qY) and R(q,, ¢2)" = R(q>, q1)-

DEFINITION 2.1. (i).The quasi-inverse of an element ¢ in a RA ¥ is the
element a” = (a";a" ;a")".
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(ii) An element a € R(q,, q>) is invertible if there exist b € R(g., q,) such that

a;b=gq, and b;a =qg,. We call b an inverse of a.

In terms of the " operation, a™ = (a;a*;a)".
LEMMA 2.2. For an element a € R(q,, q,)
(i) a” is the largest x such that a;x <gq,.

(i) a™ is the largest x such that x ;a < q,.
(iii) If a is invertible, the inverse is unique and equal to a~.

Proof. (i) From 1.7, 1.4(i), and (4),

a;x=q, iff (a;x)-(@a ;a")=0 iff x-(@";a ;a")=0

iff x=a .

(i) Similar to (i).
(iii) Suppose b is an inverse of a. Then b =a™ by (i). On the other hand,

a =1a"=q,;a =bja;a =b;q,=0b,
soa " =b. O
For q, q1, g, € Q(U) let

G¥(q1, g2) = {a € R(q,, q,):a is invertible}

and G*(q) = G"(q, q). We write G(q,, ¢,) and G(q) if the RA 9 is understood.

We conclude this section with some observations on G(q).

LEMMA 2.3. For q € Q(A), G(q) is a group under ;

Proof. Clearly, g is the identity element of G(g) and each element is
invertible so it suffices to assume a,b € G(g) and show that a;b € G(g). Suppose
m(a;b)=p. Then g=p because g =m(a) gives q;a;b=a;b. Since b is

invertible,

pia=piasq=p;a;b;b"=a;b;b"=a;q=a.

Therefore, p =g and g = m(a;b). Similarly, x,(a;b)=gq. It is easy to see that

a;b is invertible so a;b € G(g). 0O
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LEMMA 2.4. If ge Q(N), e=¢q - q” and BV =e¢;Ue, then
(i) R"(q, q)ce;Ase
(i) G¥(q)=G"(a)-

Proof. (i). Since g=e;q=¢q;e and g;a;qg=aforaeR(q, q),
a=e;q;a;q;e=e;asece;Ase.

(i) First note that for a € R(q, q), a =e;1;e by 2.5(i) so the complement of a
is the same in both 2 and B. It follows that G¥(g) = G*(q) because m,(a), 7,(a),
and @~ are the same in % and B. []

3. A characterization of G(q,, q.).

In this section an invertible element in a RA is characterized by abstracting
the idea of a bijection between sets. (See 3.10.)

DEFINITION 3.1. Suppose % is a RA, ¢, and e, are equivalence elements in
A, and ¢,, g, are quasi-order elements with respect to e, e, respectively. Then

(i) f € A is a bijection element from e, to e, if f¥;f =e,, fifV=e,, e;; [ =f
and f;e, = f.

(ii) f € A is an isomorphism element of q, onto q, if f is a bijection element
from e, to e, and f¥;q,;f = q..

We denote the collection of all isomorphism elements of g, onto ¢,
by Ism(qi, €,:q,, €;). Observe that Ism(q,, e :q,, ¢;) = R(e;, ;) and if
felsm(qy, e,:q,, €,), then fYelsm(q,, e;:q1,¢e;). Let Aut(g,, e)=
Ism (g1, e1:91, €1), Aut(g,) =Aut(g,,1") and call the elements of these sets

automorphisms of q,.
The lemma below is a routine calculation using 1.2 and 3.1.

LEMMA 3.2. Aut(q, e) is a group under ; whenever q is a quasi-order
element with respect to e. The (group) inverse of f € Aut(q, e) is f*.

For f e Ism (¢4, e,:¢q,, ;) where ¢ is a quasi-order element with respect to ¢;
(i=1,2), we define f* = g,; f ;q,. Observe that f* depends not only on f but also
on the quasi-order elements ¢, and g,. This notation will not cause a problem
since the appropriate quasi-order elements will be clear from the context.

In the lemmas below properties of isomorphisms are developed using the
arithmetic of relation algebras.
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LEMMA 3.3. For f elsm (g, €,:¢2, €2),
(i) r* :C]13f:f§512,
(i) (f392)"=f3q2,
(iii) (q1:)" =q1:f.
Proof. (1). By 3.1(ii), g, =f";q.;f. Applying f on the left
Fsaa=fifSaqif=enqisf=q0f

by 3.1(i) and 1.2(i). Part (i) follows.
(ii) From 3.1(ii), g7 - (f":q::f) =0 which, using (4), is equivalent to
(q:5f) - (f:42) =0. Thus,

(/392" =(q::f)" =/ 34z
On the other hand, f;f" =e, implies 1 =1";1=f;fY;1=f;1s0
1=f:1=fi(q2 +q2) =392 + /34>

which gives (f;¢,) =f:q-.
(iii) The proof is similar to (ii). O

LEMMA 3.4. For f eIsm(q,, e,:q2, €2),
@) w(f*)=q,
(i) 7,(f*) = q>,
(iii) (f*)" = ("
(iv) if g € Ism (g2, €2:q5, €3), then (f;8)* =f*;g*.
Proof. (i) (f*)73(f"Y=(q::f)5(qi: ) =q7:f: 1757 =qise1597 =
q1 ;97 =qi uvsing 3.3(i), 3.3(iii), 3.1(i), 1.2(i) and m,(q,) = q,.
(i) Similar to the proof of (i).
(iii) Since f” € Ism (g2, €2:41, €1), (fY)* = q2;fY;q,. Now,

(7 =q925(f3920" =q5:95 5V = q2 3 f = (qo; f) = (f)*

using 2.1(i), part (ii), 3.3(i), 7,(q.) = q,, 3.3(iii) and 3.3(i).
(iv). First observe that f;g e Ism (g, e,:¢3, ¢5). Then, by 3.3(i), (f;g)* =

q1;f38:9:=f";8" O

The main result of this section characterizes invertible elements in a RA 2 in
terms of isomorphism elements.
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THEOREM 3.5. If q; is a partial order element with respect to an equivalence
element e; (i =1, 2), the map that sends f — f* is a bijection of Ism (q,, €,:q2, e,)
onto G(q1, q2)- If 1= q», the map is a group isomorphism Aut (q;, ;) = G(g,).

Proof. The second statement easily follows from the first using 3.2, 3.3, and
3.4 so we prove the first. Because

ffm =)y =) = =a

and similarly f*7;f*=g¢,, we have f*e G(q,, g»). To prove the * map is
q p

one-one assume f* = g*. Then
fUi8=(f192)":8=(8:92)":8 = 9558”8 =q5 ;2= q3

and similarly f;g < ¢,. By 1.2(ii)

6) f'58=q2 g5 =e

which implies that g =e,;g =f;f" ;g =f;e,=f. By a similar argument f =g and

it follows that * is one—one. It remains to show that the * map is onto G(q,, ¢»).

For an aeG(qy, q,) define f=a-a “. It is immediate that f“=a" -a".

Statements (7), (11), and (15) below show that f is the desired element.

(7) fis a bijection element from e, to e,.

Clearly, e,;f =(es;a) - (e,;a ") =a-a"" =f because a € G(q,, q,). Hence,
ensf=<f=1;f<ey;fsof =e;;f Similarly, f;e, =f Next,

(8) f3f7=(a-a");(a sa")=(a;a7) (@ ";a”)=¢q, g7 =e:.
The inequality = below is justified by Lemma 1.1.

©) ex=qi-q7 =(a;a7) - qr =a;((a”;q7) -a")=a;((qi;a)” -a”
=a;f".
Using (9) and Lemma 1.1 we obtain

(10) e;=(f;a”) - qi=f;((f";5q0) - a)=f;((a™5q1) - a”) =f f".

From (8) and (10) we obtain f;f" =e,. A similar argument gives f"”;f =e,
and this completes the proof of (7).

(11) f € Ism (ql) €1:q2, 62)'
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LEMMA 3.7. (i) Each of the maps cxy, cx, ¢y, and cy x are one—one and
onto with its inverse being given by the corresponding d. For example,
dy,y(cxv(R)) =R and cx y(dx y(a))=a foral Rc X X Y and a € E|; Re(Z) ; E,.

(i) The c’s (and also the d’s) preserve composition. For example, for
ScXXX, RcXXY, and Tc¥YXX, cx(5);cxv(R)=cxy(S°R) and
cx,v(R);ey x(T) =cx(ReT), etc.

(iii) ¢(R7)=c(R)™ and c(R™")=c(R)" for appropriate subscripts.

From 3.7, 2.1, 1.4 and (16)—(19) we immediately obtain

LEMMA 38. For Rc X XY
(i) @ (R)=d(m(c(R))),
(ii) m(R) = d(m,(c(R))),
(i) R™=d((¢(R))"),
(iv) R is invertible iff c¢(R) is invertible. Moreover, if R is invertible, its
unique inverse is R™.

It follows from 3.8 that if =, is a quasi-ordering on X and =, is a
quasi-ordering on Y, then R € G(m;, m,) iff ¢(R) € G(c(7y), ¢(7,)). Applying 3.8
to 1.5 and 1.6 we obtain properties of m;(R) and 7,(R).

LEMMA 39. ForRc X XY,
(i) m,(R) is the largest solution S to S°R =R,
(ii) 7, (R) is the largest solution § to RS =R,
(iii) m,(R) (respectively, mw.(R)) is a quasi-ordering on X (respectively, Y).

The units m;(R) and ,(R) where R < X X Y can also be characterized by the
following formulas:

(20) (x, xp)em(R) iff VyeY((x5, y)eR=>(x,,y)eR)
(1) (v, v2) € (R) iff Vx € X((x, y) e R= (x, y») € R)

In particular, (20) and (21) imply that if F < X X Y is a function,

(22) m(F)=Xker (F)U X X (X — Dom (F)) and
(23) 7, (F)=1,U(Y-Ran (F)) X Y.
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If Fc X XY is a bijection of X onto Y, then (22) and (23) imply that m,(F) = I
and 7.(F)=Iy. Hence, in %e(Z), m)(c(F))=E, and n,(c(F))=E,, i.e., c(F)e
R(E,, E,). Also, Fis invertible and, using (18), its quasi-inverse F~ = F~'. Using
3.8(iv), it follows that c(F) is a bijection element from E, to E,. Conversely, if f
is a bijection element from E, to E,, feR(E,, E;) so f=c(F) for some
F < X X Y by 3.7(i). The condition f“of = E, implies that F is a function whose
range is Y while f of¥ = E; implies that F is one—one and its domain is X. Thus, F
is a bijection from X onto Y. The argument above establishes the first statement
in the lemma below. The second statement follows from the first and the fact that
a bijection F: X — Y that satisfies the property F~'e s, oF = 7, is an isomorphism
of (X, m,) onto (Y, m,). The set of isomorphisms of (X, &;) onto (Y, ;) is
denoted by Ism (7, 7).

LEMMA 3.10. Suppose Fc X XY, f=c(F), m (respectively, m,) is a
quasi-ordering on X (respectively, Y), and q, = ¢(m;) for i =1, 2. Then

(i) fis a bijection element from E, to E, iff F is a bijection from X onto Y,

(ii) f eIsm (g, E1: g2, E>) iff F € Ism (7, 7).

Now suppose 7, is a quasi-ordering on X, m, is a quasi-ordering on Y, and
q: = c(m;) for i =1, 2. With respect to e;=q; Nq;, g, is a partial order element
and, by 3.6(i), G(q1, q2)=Ism(q,, e,:q,, ;). Using the definition of e,
e1°oRe(X X Y)oe,=Re(X') where X' =X/(n,Nny) and g, corresponds to a
partial ordering *m; on X'. Similarly, g, corresponds to a partial ordering *, on
Y' =Y/(7m, N 7y).

Using the correspondence between Ism (*r,, *7,) and Ism(q,, e;:g>, e2)
given in 3.10, we obtain from 3.5

THEOREM 3.11. For quasi-orderings n; on X; (for i=1,2), there is a
natural bijection between G(my, m,) and Ism ((*X,, *m,), (*X,, *7,)) where *m;
is the partial ordering induced by m; on *X;=X,/(;w; Na;Y). In particular, if
Xi=X,=Xand m,=m,=m, G(7x)=Aut ({*X, *x)).

These results can be obtained directly without using relation algebras. To do
so, first show that G(smy, ;)= G(*7y, *7,) where *m; is the partial ordering
induced by x; (i =1, 2). Then show that Ism (*r,, *,) = G(*x,, *m,) using the
map that sends an isomorphism F:{(*X;, *m,)— (*X,, *m,) to the relation
#w10 Fo*m,.
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4. A topological characterization of Q(%¢(X)).

As mentioned at the start of section 2 the collection Q(2) of all quasi-order
elements in a complete RA A forms a complete lattice. For short, we let
Q(X) = Q(%Re(X)) the lattice of all quasi-orderings on a set X. In this section the
lattice Q(X) is described. As a corollary we characterize the units 7,(R) and
7. (R) of arelation Rc X X Y.

For a relation R < X XY the operation R"=R™ ~'cY x X is a concrete
version of the " operation in a general RA. Below a basic quasi-ordering is
associated with each subset of X.

DEFINITION 4.1. For A c X, let w(A) = (A X (X — A))".

Equivalently, we could define 7(A) = (A X X) U (X X (X — A)). It is easy to
verify that w(A) is a quasi-ordering on X.

THEOREM 4.2. Every quasi-ordering s on X is an intersection of w(A)’s.

Proof. Because X X X = 7(X) we may assume 7 # X X X. For (x, y) ¢ w let
A,,={zeX:(z,y)en and (x,z) ¢ w}. Then, for (x,y)¢n, it easily follows
that

(24) mwc 7w(A,,,), and
(25) (x,y) ¢ m(As,)

from which we obtain 7 =\ {7w(A, ,):(x,y) ¢x}. O

COROLLARY 4.3. The w(A)’s for A#0, X are exactly the maximal quasi-
orderings on X.

Proof. Every maximal quasi-ordering on X has the form 7(A) by 4.2. On the
other hand, if 7(A4) g #(B) and B #0, X, then (applying *) we see that A > B
and X —A > X — B, so A= B. Thus, n(A) is maximal whenever A #0, X. [

A topology on X is called a N-topology if it is closed under arbitrary
intersections. The collection of all N -topologies on X form a complete lattice
denoted by T(X). A N-topology J is said to be generated by a collection & of
subsets of X if 7 is the smallest N -topology that contains &/. It is easily seen that

LEMMA 4.4. A N-topology T is generated by a collection s iff every element
of T is a union of intersections of members of A.
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A topology associated with & € Q(X) is defined by I, = {Ac X: 7w < n(A)}.
The next lemma shows that every quasi-order determines a N -topology.

LEMMA 4.5. For me Q(X) T, is a N-topology on X.
Proof. Clearly 0, X € 7,. The inclusion
(X - LiJAl-) X (LiJAi) c;LiJ(X-A,-) X A;
implies
26) Nx(A) s 4)

which shows that 7, is closed under arbitrary unions. Similary,

(X_OAf)X(OAi)=HJ (X_AI)XOAI‘
~U [ -A)x 4]

cU(X—A4)xA]
yields '
(27) O (A) < ”(O A)

which implies that 7, is closed under arbitrary intersections. [

THEOREM 4.6. The correspondence w— T, is an anti-isomorphism of Q(X)
onto T ~(X).

Proof. The map is one~one by 4.2 and clearly & ¢ &’ implies 7. < 9, so it
suffices to show the map is onto. Suppose J is a N-topology on X and let
7wy =N {7(B):BeJ}. Clearly 7, is a quasi-ordering and 7 < 7, because
A e 7 implies my < w(A). For each Be 7

(28) 7(B)= U (XX {y))U L (B x {y))

so it follows that

29) ng=ylzlx<ﬂ{B:yEBe?7}> X {y}.
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Now, suppose A < X, 7n(A) 27, and x € A. Comparing (28) for A and (29) it
follows that

xe(V{B:xeBeJ}cA.
Thus, A € J and it follows that 7, = 7 as desired. [
The proof that the map in 4.6 is onto has several consequences.

COROLLARY 4.7. Suppose n is a quasi-ordering on X, I, the associated
N -topology, and w= Ll ,.x A, X {y}. Then
(i) T, is generated by {A,,:(x,y) ¢ 7}.
(i) {A,:y e X} is a basis for T,.
(ili) A, is the smallest open set of T, that contains y.

Proof. (ii) For Be 7,. LI, A, X {y} c(BXX)LI(X X (X~ B)), soif yeB,
ved,cB. O

The following generalizes the correspondence between finite posets and finite
T,-spaces given in [1]. The treatment in [1] uses A, as the closure of y (cf., 4.7(iii)

above).

THEOREM 4.8. 5 is a partial ordering of X iff I, is a Ty-topology.

Proof. Suppose 7 is a partial ordering on X. For x #y, either (x, y) ¢ 7w or
(y, x) ¢ m. Thus, either A, , € 7, or A, € I, which shows 7, is a T;-topology
because y €A, , and x ¢ A, ,. Conversely, suppose 7, is a Tj-topology and
consider x #y. By 4.7(iii) either x¢ A, or y¢A,. If x¢ A, then (y,x)e
(A, X (X —A) =m(A,). Similarly, y ¢ A, implies (x, y) € w(A,). Thus, 7 is a
partial ordering. [

For a given relation R the final result characterizes m,(R) and m,(R) using

topologies.
THEOREM 4.9. Suppose m, and mn, are quasi-orderings on X and Y
respectively and R = X X Y. Further, suppose
R=U A X{y}= U {x} XB,.
yeYt xex

Then (i) m, = m(R) iff {A,:y € Y} generates T ..
(i) 7w, = (R) iff {Y — B,:x € X} generates I .
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Proof. (i) Since R"= U, {y} X (X - A4,),

m(R) =ReR =UA, x (X - A,) = a(4,)".

Applying T gives Jt,(R)¥ N, m(A,), so {A,:y €Y} generates J,(R) by the
argument in 4.6. Thus, (i) follows. The proof of (ii) is similar. O
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