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The representation of 3—dimensional
cylindric algebras

STEPHEN D. COMER!

When the representation of a cylindric algebra (a CA) is mentioned,
normally one thinks about representing the algebra as a subdirect product
of cylindric set algebras. The class of CA,’s (cylindric algebras of dimen-
sion «) having such a (set) representation is denoted by RCA,. However,
there are other constructions which can be used to represent C'A’s. For
example, in [8], 2.7.43, every C'A is embedded into the complex algebra
of a relational system of a specific type called a cylindric atom structure.
The term ”relational representability” is used in [8] to refer to this type
of representation. Actually, the notion of representability in terms of set
algebras is a form of relational representability using a special class of atom
structures (cf., 2.7.45 of [8]). Another special type of relational representa-
tion was considered in Monk [12] where integral C As’s were associated with
quasigroups. This construction was used to produce CA3z’s that are not in
RCA3. The starting point for the ideas presented here was the problem
posed in [12] about whether every integral C'As is isomorphic to the com-
plex algebra of a quasigroup. The answer is shown to be ”no” in Theorem
4.4, but if, in Monk’s construction, "quasigroup” is replaced by ”multi-
valued loop” and ”duplicate atoms” are allowed, the answer becomes ”yes”
(Theorem 3.4(iv)). Essentially the same argument allows every complete
and atomic C'Az to be ”coordinatized” by a certain kind of multi-valued
groupoid (Theorem 3.4(i)).
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After a few preliminaries about C'Ag’s in Section 1, various multi-valued
systems are discussed in Section 2. The main representation results are given
in Section 3. In Section 4 various classes of C' A3’s are characterized using

-the multi-valued representations and the problems raised in Monk [12] are
answered. In particular, it is shown that the class of group representable
CAs’s is not finitely axiomatizable over the class of integral C'Az’s. This
is a CAs analogue of McKenzie’s nonfinite axiomatizability result [11] for
group representable relation algebras. The representation of integral C'Ag’s
by multi-valued loops and the analogue of McKenzie’s work were announced
in [2] and [4] respectively.

1. Cylindric algebras of dimension 3

In this section we recall notation and terminology about cylindric alge-
bras and establish preliminary results needed in section 3.
A cylindric algebra of dimension 3, or C'As, is a system

A= <A> +, —307 1>cladij>ij<3

that satisfies the following conditions for all ¢,j,k < 3 and all z,y € A:

(Co) (4,+,-,—,0,1) is a Boolean algebra,

(Cl) Cio = 0,

(C2) =<,

(Ca) ci(z-ciy) = ciw - ¢y,

(04) GGk == CiCiT,

(Cs) du=1,

(Co) cj(dij - dj) = dg i j # 1, K,

(07) Ci(dij .CC) : Ci(dz" . “l’) =0if ¢ # j
The algebraic theory of cylindric algebras has been extensively developed
in Henkin, Monk, and Tarski [8] and [9]. For a brief readable introduction
to the theory, see Monk [12]. The notation and terminology of [8] and [9]
will be used with the following exception: if R is a relation and X U {z} is
a subset of the domain of R, the R-image of X is denoted RX (or R(X)
if clarity is needed) instead of R*X and the R-image of x is denoted Rz
(or R(z)) instead of R*z. In particular, for an equivalence relation ¢, the
equivalence class of x, /0(= 0*z) is denoted by 6.

The property in Lemma 1.1(i), given below, was introduced in Monk

[12]. A CAj3 that satisfies this property is called integral. It is obvious that
every non-trivial integral C' As is simple (cf., 2.3.14 of [8]).
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Lemma 1.1. In a non-trivial C A3 the following are equivalent:

(i) Va(z # 0 = cocrz = cpcex = c1c9z = 1),
(ii) dpy - dyo is an atom.

Proof. (i) == (ii). Suppose (i) holds and assume z,y # 0, -y = 0, and
z+y = dp1 - di2'in A. Use (Cr7) twice and the fact cox + coy = dia to obtain
cicoz-c1coy = 0. So, not both cpeix and coeyy can equal 1 which contradicts
(1) Thus, either d()l 'd12 is an atom or d01 'd12 = 0. But, d(n 'd12 =0 implies
2 has only one element; so (ii) holds. (ii) = (i). If coc1z - do1 + d12 = 0,
then

0= 60010 = CgC1 (coclx . d01 . d12) = Cl(C()Clx . d12) = CoC1T

which implies z = 0. Thus, if (ii) holds and z # 0, then dg; - dis < cociz
which yields 1 = cpci(do1 - di2) = cociz. The other cases are similar. §

A CAj3 is called complete and atomic if its Boolean part is complete
and atomic. By 2.7.20 of [8] every C'As can be embedded in a complete
and atomic C'As (its perfect extension). This embedding preserves various
properties including simplicity (2.7.17 of [8]). An argument similar to 2.7.17
shows that being integral is also preserved.

Lemma 1.2. Every (integral) C As can be embedded in an (integral) C Az
that is complete and atomic.

Complete and atomic C' A’s can be studied by structures on the atoms.
The cylindric atom structure of a complete and atomic C Az B (cf., 2.7.32
of [8]) is the system At = (AtB,T;, Eyj); j<3 where
T; = {(z,y) € AlB x At®B : ciz = ¢y} and Ejj = {x € AtB : x < d;;}. The
next lemma axiomatizes the notion of an cylindric atom structure.

Lemma 1.3. (2.7.40-2.7.41 of [8]) The cylindric atom structure of a com-
plete atomic C A3 can be characterized as a relational system

B = (B,T;, Ez’j)i,j<3 where T; C B x B, E;; C B such that for all
1,7,k < 3:

(i) T; is an equivalence relation on B,
(i) T =TT,
(iii) Eiy = B,
(iV) Eij == Tk(Eik N Ekj) fori,j #k,
(v) |Tiz N E;j| =1 whenever x € B, i # j.
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Every cylindric atom structure determines a complete atomic CAj .
Namely, from such a structure B = (B, T;, E;;); j<s we obtain a complete
atomic CAj :

B = <SbB, U, ﬂ, ~, @, B, iy Eij>i,j<3

where, for X C B and 1 < 3, ;X = {y € B : 2Ty for some z € X}. ¢mB
is called the complex algebra of B (cf., 2.7.33 of [8]). It is easily seen that
every complete atomic C'Az 2 is isomorphic to €m2A (2.7.43 of [§]).

The connection between complete atomic CA’s and cylindric atom
structures allows C' A concepts to be introduced via relational systems. This
approach is used below to introduce the notion of an adjunction of a com-
plete atomic C'As , that is, an extension of the algebra that is obtained by
replacing one or more atoms x £ dy; + di2 + dpg by a set of atoms each
of which act like . Such an extension can be produced by an appropriate
iteration of dilations (cf., 3.2.69 of [9]).

Definition 1.4.
(i) For cylindric atom structures B = (B,T;, E;;); j<3 and %' =
(B, T}, Efj>i,j<3 a function h from B onto B’ is a full homo-
morphism of B onto B, in symbols h : B = B, if, for all
z,y € Bandi,j <3,

2Ty & (he)T(hy) and x € Ey < (ha) € Ej; .

(ii) For complete and atomic C A3 ’s 2 and B, 2 is an adjunction
of B, in symbols 2% € Adj(B), if h : WA = AWB for some full
homomorphism h. If K is a class of CAg ’s, let Adj(K) =
U{Adj(®8): B € K}.

Proposition 1.5.

(i) If®B and B are cylindric atom structures and B = %', then
e¢mB’ is embeddable in €m®B .

(i) For A and B complete atomic C Az s, % € Adj(B) implies B
is isomorphic to a subalgebra of 2.

Proof. (i) If 8 > %', there exist a full homomorphism % of 9B onto B . It
is straight forward to check that the map

w%—ﬂJ{h_la:aE:c}

is an embedding of €m®B’ into ¢mB .
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(i) From (i) and the fact that for every complete atomic C'Az 21, 9 &
CmALA . § )

For complete atomic C Az ’s A and B we say that B is minimal with
respect to A € Adj(B) if € € Adj(B) for every complete atomic € with
2 € Adj(¢). In particular, it follows that 2 € Adj(8).

If 0 is an equivalence relation on A¢2(, we let 22 /0 denote the quotient
of the relational system 2t by 6; that is, 2% /6 is the system
(AtA/0,T], Bj;) where At/0 = {6z : z € At} is the collection of all
6-blocks, (6x)17(8y) < 2Ty, and Oz € Ei; &z € By for all i,j < 3.

Proposition 1.6. Suppose 2 is a complete atomic C A3 with cylindric atom
structure A = (AtA, T3, Eyj); j<3 and 0 = Ty N Ty N Ty. Then
(i) A#A/0 is a cylindric atom structure;
(i) em2AA /0 is isomorphic to a subalgebra B of A that is minimal
with respect to % € Adj (8);
(iii) The subalgebra % of 2 in (ii) is unique. In fact it is character-
ized by

zeB iff Yae AtU(a <z == coa-cia-ca < ).

Proof. (i). Clearly 6 is an equivalence relation on At2 such that for all
x,y € At
z0y iff cqx=cy forall i<3.

Properties 1.3(i)—(iii) are obvious for 22 /6. For 1.3(iv),

0z € Ej; & x € Bij < 2Ty for some y € Ey, N By, (1.3(iv) for A6A)
& (0)Ty(0y) for some 0y € Efy N Ey;
& 0z € Ty(Ejy N Ey).

For 1.3(v), suppose 8z, 0y € E;; with i # j and (02)T}(0y). Then z,y € E;;
and 2Ty so x = y by 1.3(v) for A4tA. This finishes the proof of (i).

(ii). The map 0" : z +— Oz shows that A = /AAH. Thus, by 1.5(i)
CmAtA /6 is isomorphic to a subalgebra B of . Now, if A € Adj(¢) for
some complete atomic €, there is a full homomorphism A : A = Ute.
For z,y € At, hx = hy implies haT hy and hence zT}y for all i. Thus,
kerh C 0. Hence there exist a full homomorphism & : 248 > 2 /# such
that 6" = koh. Therefore, ¢ € Adj (emAeA /7). Thus, EmAA /6 is minimal
with the property.
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(iii). Suppose B is the subalgebra of 2 constructed in (ii). Since
ALB = ALA /O, the atoms of B are elements T*0z where z € AtA and
0= To‘ N T1 N TQ‘ Then

(1) coz-crz-cow = co(X0x)-¢c1(20x)-co(X0x) = L0z for every =z € At

First note that ¢;(20z) = Xc¢;fx = ciz for all i. Now, suppose z,y €
At and y < cox - 12 - cox. Then ¢;y < ¢;z and since ¢;z is an atom of the
BA of ¢;—closed elements of 2, ¢;y = ¢;z. Hence, 20y and y < Lfz. Thus,
cot - 12 - cox < 2fz which completes the proof of (1).

Now suppose 2 € B, x 3 0, and a € At such that ¢ < z. Then
T > ¥fha = coa - c1a - caa, the smallest atom of B that contains a. On the
other hand, suppose x satisfies the condition. 2 is atomic so
z=3%{a€ AtA:a <z} =%{30a:a € AtN,a < z} € B by (1) and the
condition on z. §

Note that 1.6(iii) implies that an algebra % which is minimal with
respect to 2 € Adj (%) is unique up to isomorphism. The following is a
corollary of the observation that §* is a bijection between E;; and E{7 for
i # j. Namely, if x € E;j, 1 # j and yfz, then y =  because =,y < d;; and
z -y = 0 implies ¢;z - c;y = 0; thus, r = {z} whenever z € E;; for i # j.

Corollary 1.7. Suppose % € Adj(%8). Then 2 is integral iff B is integral.

The notions of integral and adjunction as well as the results of this
section can obviously be generalized to CA,’s for n < w.

2. Partial multi—valued loops

In this section we introduce a class of multi—valued systems that will be
used to create CAz’s. Several special classes to be used later are described
in 2.2.

Definition 2.1. A partial multi—valued loop is a structure
M = (M,o, E) where ) # E C M, aob C M for all a,b € M, and the
following properties hold for all x,y € M:
(i) there exist a unique e € E such that z o e = {z} and a unique
f € E such that fox = {z}. We denote e = r(z) and f = d(z).
(i) eoe={e} foralle € E,
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(iii) zoy # 0 iff r(z) = d(y),

(iv) z € yoz for some z € M iff d(z) = d(y),

(v) z€zoy for some z € M iff r(z) = r(y),

(vi) there exist a unique z € M and a unique w € M such that
d(y) € yo z and r(y) € wy.

Intuitively, a partial multi-valued loop (M, o, E} can be thought of as
a multi-pregroupoid in the sense of category theory. That is, there is a
multi-valued composition o on a set M of morphisms between objects of a
set E. Fach x € M has a unique domain and range object, d(z) and r(z)
respectively. - The objects are the idempotent maps. Conditions 2.1(iii)~
(v) say that the composition is non-empty and “equations” can be solved
precisely when the ranges and domains match properly. Property 2.1(vi)
says that each map in M has a unique right and a unique left inverse. Note
that the composition is not assumed to be associative.

When the value of a product is a singleton, ie., z oy = {2z} as in
2.1(i) or 2.1(ii), we write z oy = z. A function on a partial multi-valued
loop 9 has a natural extension to subsets of M. The same symbol will
denote both the function and its extension. For example, for X, Y C M,
XoY=UWzoy:zeX,yeY}. ‘

Examples 2.2. (i) A multi—valued loop (see [3]) is a partial multi-valued
loop in which E = {e}. In this case, condition 2.1(i) implies that z oe =
z = eox for all z which subsumes 2.1(ii). Conditions 2.1(iii)—(v) mean:
given any two of z,y, z a third value exists such that z € y o z. Condition
2.1(vi) stipulates unique right and left inverses.
(ii) A multi-valued loop (i.e., E = {e}) in which |zoy|=1forall z,y € M
is an ordinary loop, i.e., xoe = x = eox for all x and each of the equations
r=yoz y=xo0z2, and y = zox have a unique solution for x given y and
z.
(iii) A polygroupoid (see [5]) is a partial multi-valued algebra
M= (M,o0, E,”') where ) # E C M, aob C M for all a,b € M and ~!is
a unary operation on M such that

(1) (xoy)oz==zo(yoz) forall z,y,z,

(2) zoE=xz=Fogxforall z,

(3) theformulas z € yoz,y € xoz™} and 2z € y~

for all z,y, 2.

Log are equivalent

Using properties (1)~(3) and Lemma 4.1 of [5] it is not hard to show
that (M,o{E):is a partial multi-valued loop whenever (M,o, E, ™) is a
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polygroupoid. The atom structures of relation algebras were characterized
by polygroupoids in [5].
(iv) A polygroup is a polygroupoid (see (iii) above) in which E = {e} and
aob # () for all a,b € M. Many natural examples of polygroups are ob-
tained from groups, geometry, and combinatorial schemes (cf., [6], [7]). The
atom structures of integral relation algebras were characterized by poly-
groups in [6].
(v) A groupoid, i.e., a category in which every morphism is invertible, can
be regarded as a partial multi-valued loop and, in fact, a polygroupoid in
a natural way (cf., [10]). Namely, a groupoid can be defined as a system
(M, 0,I) where I is the set of objects; M is the disjoint union of {M;; :
i,J € I} where M;; is the set of morphisms from 7 to j; o is a partial binary
operation where x o y is defined for x € M;; and y € My, iff j = s, and, in
this case, xoy € My ; 1 € M;; is an identity (i.e., oz =z and yo1i = y for
r € M;; and y € My,); o is assoclative whenever it makes sense; and each
x € M;; has a unique inverse y € Mj; such that ¢ =z oy and j = y o z.
The following lemma summarizes some elementary consequences of the
axioms for partial multi-valued loops. ‘

Lemma 2.3. If (M, o, E) is a partial multi-valued loop, the following hold
for all x,y,z € M:
(i) ifz € E, then d(z) =r(z) = =,

(i) ifz,y € E and x oy # (), then x = y,

(iii) ifre Fandzoy#0, thenzoy =y,

(iv) ifr e Eandyox # 0, thenyox =1y,
(v) ifz €yoz, then d(y) = d(z), r(y) = d(2), and r(2) = r(x),
(vi) ifz € yoz and either x,y € E or z,2 € E ory,z € E, then

r=y=z¢€k.

Proof. (i) By 2.1(ii) zoz = z and, by 2.1(i), 7(x) is the unique e € F with
zoe=g. Thus, r(z) = z. Similarly, d(z) = y.

(i) fzoy#0, then z = r(z) = d(y) = y by 2.1(iii) and 2.3(i).

(iii) Suppose z oy # ) and € E. Then z = r(z) = d(y) by 2.3(ii) and
2.1(iii). Thus, z oy = d(y) oy =y by 2.1(i).

(iv) is similar to (iii) and (v) follows from 2.1(iii)~(v).

(vi) Suppose z € yoz Ify € E, 2.3(iii) implies that z € yo z = z so
7z = z and hence z € y o x. If either x € E or z € E, 2.3(iv) implies that
z € yox =y from which y = z(= z) follows. The case where z,z € F is
similar. §
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We conclude this section by associating a cylindric atom structure with
a partial multi-valued loop. The construction is an obvious generalization
of the construction given in Monk [12] to produce a cylindric atom structure
of a non-representable C' A3 from a quasigroup. See 3.2.72 of [9] for another
generalization.

Definition 2.4. Suppose M = (M, o, E) is a partial multi-valued loop.
Let Aoy = (R,T;, Eij)i j<3 where R = {(z,y,2) € M3 : 2 € x oy} and for
{i,j, k} = {0,1,2}, T = {(u,v) € R? :y; = vi}, Ey; = R, and, E;; =
Ti{(e,e,e): e € E}.

Lemma 2.5. sy is a cylindric atom structure whenever 9 is a partial
multi-valued loop. ‘

Proof. We need to verify conditions 1.3(ii), 1.3(iv), and 1.3(v) since, clear-
ly, T3 is an equivalence relation and E;; = R for all ¢ < 3. '
1.3(11): T;|T; = Ty|Tu.

"~ Suppose u,v € K. If i =0 and j =1,

(u,v) € To|T1 & Fw € R(wy = upkwy = v1) < r(ug) = d(v1) by 2.1(iii)
& d(ul) = 7“(1)0) by 2.1(iii) ‘
= (’LL,’U) S lelT() .

The cases ¢ = 0, j = 2 and ¢ = 1, j = 2 are similar using 2.1(iv), 2.1(v),
and 2.3(v).
1.3(iv): El'j == Tk(Ezk N Ekj) for 7,7 7/—‘ k.

Assume first that ¢ = j. We need to show that R = E; = Ty(Eg,) =
TyTi{(e,e,e) : e € E} where k # | # i # k. Given (x,y,2) € R, the fol-
lowing triples belong to R : (z,7(x),z), (z,w, d(x)) for some w, (d(y),y, ),
(w,y,7(y)) for some w, (z,7(2),2), and (d(z),z,z). Using the appropriate
triple, (@, vy, 2)T|Ti(e, e, €) for some e € E whenever k # [. Now, suppose
i # j. Obviously, Ej N Ex; 2 {(e,e,e) : e € E}. For the converse, suppose
u € By N Egj. Then u; € E and u; € E. Thus, by 2.3(vi), v = u; = ug
so u = (e, e,e) for some e € E. Hence Ej, N Ey; = {(e,e,¢) : e € E} from
which 1.3(iv) follows.

1.3(v): |TjvN E;;| =1 whenever v € R and i # j.

If u € TivN Eyj, then u; = v; and uy, = e for some e € E. For each triple
(uo, u1, €), (€,u1,u2), and (ug, €, us), if one of the u;’s, u; # e, is known, the
other is uniquely determined by 2.1(vi), 2.3(iii), and 2.3(iv). Thus, 1.3(v)
holds and the lemma, follows. § '
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3. Representability

The main results of this section give a representation of a C'Az as an
adjunction of the complex algebra of a partial multi-—valued loop. In the case
of an integral C Az the ”coordinatizing system” 9y in the representation is
a multi-valued loop. The first result shows that a partial multi~valued loop
can be associated with every complete and atomic C' Az .

Suppose 2 is a complete atomic C A3 with atom structure
(AN, T, Eij)s j<s. Define My = (E13,0, E) where E = Egy N Eyy and, for
T,y € Eng,
zoy=FisN TQ(TO(d()Q . Czw) N le)

Proposition 3.1.

(i) My Is a partial multi—valued loop if Y is a complete atomic
CAs.
(ii) If is integral, then My is a multi-valued loop.

Proof. (ii) follows easily from (i) because if 2 is integral, then
E = {do1 - d12} by Lemma 1.1. To verify (i) we must check properties
2.1(i)—(vi). Observe that for z,y,z € Ei:

(1) z€Toy &z < dia-ca(shoam - e1y).
where séx = ¢;(d;z) for ¢ # j (cf., 1.5.1 of [8]).
(2) for x€ Fyy, f=dp-coreF and for=z.

Clearly, f = do2 - cox < dpadiz and f is an atom by 1.10.4(ii) of [8].
Thus, f € E. Now, by (1),

z€ fox e z<d-cafeof - c1z) = dia - calcox - 1) .

But, cox < cpdig = dyo; 80 oz c1x = cox - dia - crx = - cgx = x. Therefore,

Z€ for e z2<dia- cox =x. Hence fox =z and (2) holds.

(3) for x € Erg, e = dyg - Cl(dog . Cg%) = d19-dgs-cicor € F and xoe = z.
An argument similar to the one for (2) shows e € E. Then v oe =z

follows from

zeExoew z<dyg- 02(33023: dog - c109x) =

dlg . Cz(CzLB . dog . 6102.'1;) = d12 X =T .
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(4) forz € E1z and e, e’ € E, if either zoe # @ and z o ¢’ £BQoreox #D
and € ox # (@, then e = ¢’ ‘

Suppose zoe # . Then 0 # ca(dpz- coz-c1€) = cox-cacre = ca(x-cacye)
using (1), 1.3.9 of [8], (C3), and c1e < dg2. Thus, z < cacie because © € At
and z - cocie # 0. Also if zo e # (), then z < cacie - cocie’. Tt follows that
e = ¢ because if e # ¢/, then e- ¢ = 0 and e,e/ < di» which implies
cre-cre’ =0 and cie, ci€’ < dygo which gives cocie - cacre’ = 0 contradicting
z < cacre - cacr€’. The proof that eoz # () and €’ o ¢ # () implies e = ¢ is
similar.

The existence part of 2.1(i) follows from (2) and (3) while the uniqueness
-part follows from (4). Moreover, it follows from (2), (3), and (4) that

(5) for z € Evg, d(z) = do2 - coz and 7(z) = dyg - dya - cicox and that if
zoe# D, foxr#Dfore, feE, then e =r(z) and f = d(z).

Condition 2.1(ii) follows from (6) below.
(6) foree E,ece=c.

Using (1), the fact e < dg, cpe < dq2, and 1.3.9 of [8] we obtain

ZE606©2Sd12'62(606~(116):dlz'CQ(Coe'dlg'Cle)Zdlz'CQCZE.

(7) forz,y€ Eig,zo0y#0 < zoe=xand eoy =y for some e € E.
First note that for z,y € Fis,

zoy# (0 & sdeox - cyy #0
& coci(doz - cax) - copcry # 0
(8) s Cl(dog . Cz.’L‘) < CoY 7-4 0.

AISO, C1 (dgz 'CQ.’E) *CoY < d02 -d12 because Cldog = d02 and (&) < C()Cl12 = dlg.
To prove ==, assume zoy # @ and let e = ¢1(dp2-coz)-coy. By an argument
similar to the one used in the proof of (2), e € A¢% and thus e € E. Also,

zEe€xoe & 2z <djs- 62(886233 ~dgo - c10T - cocly)
&2 < dyg - CQ(Cgm © C1C2T - C()Cly)
S z<dig - cox =zx.

Thus, z 0 e = x. Similarly, e o y = y because e < dgy implies dgs - coe = e
which, with cpe < dj2, gives

z€eoys zLdig-ca(cpe-cry) <diz-ciy=y.
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To prove <=, we assume z o e # () and eoy # (). By (8) z o e # ) implies
0 7é Cgcl(doz . ng) *Cplre = 0061(0001(d02 . Cgm) . e) .

Therefore, coci(dpa - coz) - € $# 0 which implies e < cgcy(doe - e2x).
Similarly, e o y # @ implies co(coc1y - €) # 0 so e < cpcry. Thus, e <
coc1(dog - ca) - coery which implies z o y # (0 by (8).

(9) for z,y € E19, x € yo z for some z € Eig & d(z) = d(y).

First, observe that for z,y,z € Eig
(10) z € yoz & coxr < 62(38023/ SC01%) & Ccox cz(sgch 0z #£)0 &
Cott - 89coy - c12 # 0

Now, assume x € y o z for some z. Then coz - s9coy - c12 # 0 for some z
which implies cpz - s9coy # 0. Hence, cocox - cos9eay # 0, coca(cox - cay) # 0,
and thus coz - cay # 0. Since cox < cpdiz = dig and y < dig, 0 # cox - coy =
cox - dig - cay = coz - y. Hence y < coz and thus, cpz = cpy. Since the
formula for d(z) in (5) involves only coz, it follows that d(z) = d(y). For
the implication <, assume d(z) = d(y). Then coz = coy by (5) and so
0 #y-cor < ey - cox. Thus, '

cocalcoT - coy) = coco - CgsgCZy = ¢ococow - sgcw) #0

and hence coz - 89coy # 0. Choose an atom w < ¢z - s9coy and let z =
dis - cyw, an atom in E1o. Since w < e1z we have cox - sSczy cc1z # 0-and
hence z € y o z by (10).

(11) for z,y € F12, x € z oy for some z € E1g < r(z) = r(y).

By an argument similar to the proof of (9) it can be shown that x € zoy
for some z is equivalent to cox - ¢c1y # 0 which, in turn, is equivalent to
c1cox = c1eoy; which is equivalent to r(z) = r(y).

Conditions 2.1(iii)—(v) obviously follow from (7), (9), and (11). It re-
mains to verify 2.1(vi). The existence portion follows from (9) and (11).
The uniqueness is established below.

(12) Fory,z,72 € Epife € zoy and e € 2/ oy where e = r(y), then z = 2/
and if e € yoz and e € y o 2/ where e = d(y), then z = 2.

Suppose e € z oy where e = r(y). Then cge < do; and, by (10),
Co€ - sg(:gz -c1y # 0. Choose an atom u < s%czz -c1y - dp1. Then cpu < a1y,
an atom in the BA of c1—closed elements; so cyu = ¢1y. Thus, v = dg1-c1u =
d01 cC1Y. AlSO, dOQ - CcolU S dozsgczz = d()2 NSV AS E02; S0 d()2 cCU = d()z cCRZ2.
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Hence, 2z = dyg - coz = dig sgcou. If e € 2/ 0y, a similar argument shows
that an atom u' < 89caz’ - c1y - do1 has the form u = dg; - 1y = u and
2 = dyq-s3cou’. Therefore, z = 2. The argument for the equations e € yoz
and e € yo 2 is similar: first choose an atom u < 38021/ - 12 - dgp and show
that v = doy - s9coy and z = dya - c;u which depends only on y. §

By Proposition 3.1 each complete and atomic C'As A gives rise to a
partial multi-—valued loop My which, by Lemma 2.5, produces a cylindric
atom structure. The next result characterizes this atom structure as exactly
the cylindric atom structure associated with the minimal % such that 2 €
Adj(58).

Proposition 3.2. For a complete atomic CAg A let

ULA - = <AtQ(,TZ', Eij>i,j73 and let MM = My = <E12,O,E>. Let Agp =
(R, T/, Ei%)ij<s denote the cylindric atom structure associated with 9 in
2.4 and let A /0 = (AlA/0,T], El;)ij<s denotes the quotient cylindric
atom structure where 8 = To N1y N T5.

Then gy = AA /0.

Proof. For u € R ={(z,y,2) € E%z :z €z oy} define
S(u) = To(doz - caug) N Truy N Tous .

Note that s(u) is a non-empty subset of At% because v € R (cf., (10) in
3.1). We will see below that s(u) = 0z for some z € At2. To show that s is
the desired isomorphism of gy onto 22 /8 we need the following properties
of s for u,v € R and z,y € At:
(1) if u # v, then s(u) N s(v) =0,
(2) z € s(u) where u = (dyg - sgcom, dig - c1z, dig - cax). Thus,
At = U{s(u) : u € R}, '
s((e,e,e)) = {e} for e € E = Eg; N Eyo,
(4) 2Ly iff z € s(u), y € s(v) with u; = v;,
(5) for {i,4,k} = {0,1,2}, z € E;; ifl z € s(u) with u;, € E.
By (4), if z € s(u), 0z = (Toz) N (T1z) N (Tez) = s(u). Hence, by
(1) and (2), the map u — s(u) is a bijection of R onto At2/6. By (4),
and appropriate definitions, (0x)T](0y) iff «T;y iff u; = v; iff wT'v where
z € s(u), y € s(v). By (5), for i # j, 0z = {2} € B, iffze Eyiffu, € E
iff u € Ej; where x € s(u). Thus, % = A2 /6.
It remains to verify properties (1)-(5). Property (1) follows from the

3

s
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fact that if z,y < d;; and z oy = 0, then ¢;z - ¢;y = 0. An easy calculation,
using (1) in the proof of 3.1, shows that u given in (2) is in R:

d12 . cz(sgcz(d12 . 8(2)6032) . C]_(d1201.’1,‘)) = d]_z . CQ(SgCox . 6117) =

dig - (32(60$ . CliL‘) > dig - ez .
Then (2) follows because

S(’U,) = To(dog . S%S%COIE) N Tl(dlg . Cl$) N Tg(dlg . sz) =
To(z) NTy(z) N To(x)

contains z. ,

For e < do1 - diz < dog, sycge = coe < diz. Thus, if 2 € 5((e,¢,¢)),
z < dig - cie - coe = e from which (3) follows. To verify (4), suppose 27T}y
and choose u, v with z € s(u), y € s(v) asin (2). Note that ¢;z = ¢;y implies
u; =.v;. Conversely, if z € s(u), y € s(v) and u; = v; it is immediate that
a:Tzuszy for ¢ = 1, 2. FOI‘ 1 = 0, xTo(dOQ . CzUO) = (dong’Uo)T()y; 50 (4) holds.
For (5), suppose i # j. Then, by (Cs), dij = c(digdy;); so

T € Eij iff zTye for some e € Ey N Ekj = Fo1 N Eiqg
iff v € s(u) withu, € E

using (3) and (4). This completes the proof of (5) and the proof of Propo-
sition 3.2. §

If M is a partial multi-valued loop, let B[M] denote ¢mAy; where Apy
is the cylindric atom structure associated with 9 in 2.4. If K is a class of
partial multi-valued loops, let B[K]| denote {B[M] : M € K}. We refer to
B[M] as the complex algebra of M. The next result, which is a corollary to
3.2 and 1.6, characterizes these complex algebras.

Theorem 3.3. For a complete atomic C' Az 2 the following are equivalent:
(i) A= B[M] for some partial multi—valued Ioop 9,

(i) cox - c1z - cox = x for every x € At,

(iii) for every x,y € At, if ¢,z = ¢y for all 1 < 3, then © = y.

Proof. (i) == (ii). Suppose u,v € R (= the graph of o) and

u € co{v} - ci{v} - ca{v}. Then u; = v; for alli < 3 so u = v, i.e.,

cof{v} - ci{v} - ca{v} = {v}.

(ii) == (iii) is obvious. Now assume (iii) and choose a minimal % such that
2 € Adj (), cf. 1.6. By (iii), % = B, i.e., no atom of B can be composed
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of more than a single atom of 2. By Proposition 3.2, the cylindric atom
structure of 2 is isomorphic to Asy where M = My. Hence, A = B[My], so
(i) holds. &

The main representation results now follow. In a sense 3.4(i) says the
partial multi-valued loop My coordinatizes A. The class of partial multi-
valued loops (multi-valued loops) is denoted by pMV~-LOOP (MV-LOOP,

respectively).

Theorem 3.4. (i) For every complete atomic C Az, A, '€ Adj (B[My]).
(i) In (i), % is integral iff My is a multi-valued loop.
(i) CAs = SAdj(B[pMV-LOOP)).
(iv) The class of integral CAg’s is SAdj (B[MV -LOOP)).

Proof. (i) holds by 1.6 and 3.2. (ii) follows from 3.1(ii), 1.7, and the
observation that B[] is integral whenever 9 is a multi-valued loop by
Lemma 1.1. Parts (iii) and (iv) follow from (i) and (ii) using Lemma 1.2. §

In the remainder of this section we characterize several natural classes
of C'A3’s in the spirit of Theorems 3.3 and 3.4.

Theorem 3.5. Suppose 2 is a complete atomic C Az. Then:
(i) A = B[M] for some multi-valued loop M iff A is integral and
3.3(ii) holds,
(i) A= B[M] for some loop M iff A is integral and

(%) z =cx- cjxz forevery x€ At and 1<j<3

(equivalently, ¢;x = c;y and cjz = c;jy imply x = y whenever
z,y € At and i < j < 3).

Proof. (i) holds by 3.3 and 3.4(ii).
(ii) =>: Ifu,v € R= {x € M®: 19 € zg o z1} such that u € ¢;{v} - ¢;{v},
then u; = v; and u; = v; . Therefore, up = vx if M is a loop. Thus,
u = v and {v} = ¢;{v}  ¢;{v}, as desired. For <=, by 3.5(1) we may
assume A & B[M] where M is a multi- valued loop. Suppose ¢ € a o b and
¢ € aobin M and let z = {(a,b,¢)}, 2 = {(a,b,)} € AtB[M]. Since
cox = cox’ and c1z = c12’, x = 2’ and so ¢ = ¢ , i.e., the operation o on M
is single—valued. @

In view of 3.5(ii), to characterize the complex algebras of groups we
only need to find a CAs identity that expresses the associative law in a

(E1) ca(c1z - s%cz(com ~e1y)) = calcox - s%cz(clz . sgs%cly))
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Lemma 3.6. For a partial multi-valued loop 9, (Ey) holds in B[] iff
is associative. ‘

Theorem 3.7. Suppose 2 is a complete atomic CAs . Then:
(i) A= B[M] for a group M iff A is integral and satisfies (E1) and
(x) in 3.5(ii),
(i) 2 = B[M] for a polygroup M iff A is integral and satisfies
3.3(ii), (E1), and the following identities:

(E9) sysesieir = sys9siciw  (cf, 2.6.44 of [8])
(E3) COT * C1Y * Co% Scoc1cz(d01sgs%cly . 61(88622 . S%Cox)) ,
(Ey) o - 1y - c2z < cocrea(dor - 8385¢0% - co(sheaz - siciy)).

Remark. The identity (E;) guarantees that the unique left inverse of an
elgment in 2.1(vi) is the same as its unique right inverse. (E3) and (Ey4)
are consequences of the identity in 1.5.22 of [8] which holds in all cylindric
set algebras. They are related to the implications in the definition of a
polygroupoid 2.2(iii)(3).

Finally, we characterize the class of simple C'As’s. A partial multi-
valued loop (M, o, E) is connected if for all 2,y € E there exist z such that
roz=zand zoy = 2z (e, d(z) = z and r(2) = y). This condition is
obviously equivalent to: for all z,y in M there exist a z such that z o 2 #
and zoy # 0. We recall that a C' Az is simple if it satisfies the property that
cocreax = 1 for all % 0. The following result extends the characterization
of simple relation algebras given in 4.5 and 4.6 of [5].

Theorem 3.8.

(i) A complete atomic C'Az 2 is simple iff M(A) is connected.
(i) SAdj{®B[m] : M is connected } is exactly the class of all simple
CAgs’s.

Proof. (i) <=: By 3.4(i), % € Adj (B[My]). Clearly 2 is simple iff B[My]
is simple. Hence, it suffices to assume §} # X C R = {(z,y,2) : z € z oy}
and show that cocic2X = R. Suppose (z,y,2) € X and (a, b, ¢) € R. Since
My is connected there exist u such that d(u) = r(a) and r(u) = r(z). By
2.1(v), z € vou for some v, i.e., (v,u,2) € R. By 2.1 w € @ o for some w.
Thus,

(a,b,¢) € co{(a,u,w)} C coc1{(v,u,2)} C cocrez{(z,y,2)} C cocreaX
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as desired. The proof of = presents no difficulty.

(i) follows immediately from 3.8(i) and the fact that perfect extensions
preserve simplicity (cf., 2.7.17 of [8]). &

Remark 3.9. The partial multi-valued loop 9ty has

Eiz = {z € At : z < dia} as its universe. The elements in F1o correspond
in a one-one way to atoms in N7y2 ( = the BA of elements z € A such
that coz = z). The correspondence sends x € Fip to coz € Nry2l and
its inverse sends x € AtNro% to diy - ¢ € Fig. Via this correspondence,
the system 9y is isomorphic to a structure defined on AtN ro2l, namely, to
(AtNro2d, o, B}y ) where Ej; = {z € AtNro% : x < dp;} and

zoy={z€ AtNr2 : 2 < 62(8833 . s%y)}-

In the definition of z o y above, ca(s9x - sdy) = y; 2 where ; is defined in
5.3.7 of [9]. Using z;y in place of y;z in the definition of z o y above is
not sufficient, however, to obtain the representation results of this section.
Given a complete atomic integral C Az 2 let My = (AtN7o2l, ©, E},) where
for z,y € AtNr2,

Oy ={z€ ANro: z < co(siz - Sgy)}' |

It is not difficult to show that Dy is a multi-valued loop anti-isomorphic
to DMy The complete atomic integral CAs 2y = B[Mg], constructed in
Theorem 4.4 below, has the property that 2o & AdjB[Ny,].

4. Quasigroup representability

In this section we provide several applications and enhancements of
the representation results in the previous section. In particular we settle
Problems 1 and 2 in Monk [12] concerning the representation of C'43’s by
quasigroups and groups.

We first describe the procedure Monk used to associate a C'A; with a
quasigroup (@, o) together with a fixed triple ¢ € Q3 such that g o ¢ = g¢o.
Let Aoy = (R,T;, Eij)i j<3 where R = {(z,y,2) € Q% x oy =z} T; =
{(u,v) € R? : u; = v}, By = R, and Eyj = {u € R : ug = qi} whenever
{i,4,k} = 3. Agq is a cylindric atom structure whose complex algebra
EmA gq is called a ), ¢ — CAz. A CAjz is called quasigroup representable if
it is embeddable in some Q, g — C Az.
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A quasigroup together with a distinquished element in the graph of o is
technically not one of the structures described in Definition 2.1. However,
this system is isotopic to such a structure. Below we see that @, ¢-CAs’s
are exactly those that are embeddable in the complex algebras of loops.

Two binary systems (G, ) and (H, o) are isotopic if there exist a triple
(e, 3,7) of one—one maps of G onto H such that

a(z) e B(z) =y(z-y)

for all z,y € G. Every quasigroup is isotopic to a loop and, as mentioned
in Bruck [1], the isotopism (e, 8,7) can be chosen so that a(go) = f(q1) =
v(g2) = e where e is the identity element of the loop and (go,¢1,¢2) is a
fixed triple such that go-q1 = ¢2. This fact together with 4.1(i) yields 4.1(ii)
below.

Proposition 4.1.

(i) If(a,f,7) is an isotopism between quasigroups (@), -) and (H, o)
and ¢ € @3, h € H3 such that a(q) = ho, B(q1) = hy and
v(q2) = ho , then €mA g4 = €mA gy, where the isomorphism is
induced by f((z,y,2)) = (ax, By,vz2).

(ii) The class of Q,q-CAs’s is precisely B[LOOP] where LOOP
denotes the class of all loops.

(iii) SB[LOOPF] is the class of quasigroup representable C A3’s.

The notion of isotopism and 4.1(i) extend to a quasigroup analogue of a
partial multi-—valued loop. In general, a ”partial multi-valued quasigroup”
is isotopic to a partial multi-valued loop and isotopic structures produce
isomorphic C'As’s. Thus, 4.1 and its generalization tell us that, as far as
representing C Az ’s are concerned, there is no need to consider quasigroup
type systems; loops will do.

The next goal (Theorem 4.4) is to show there are integral C' Az ’s that
are not quasigroup representable. The argument will involve showing that
a certain sentence holds in the class SAdjB[LOOP].

A variable v in a formula ¢ is cylindric dependent if there is an i (de-
pending on v) such that each occurrence of v, not part of a quantifier, is
in a subterm c;u. Note that every variable in the equations (Fy)—(Ejy) is
cylindric dependent, but z in the formula coz - c1z < dp1 is not.

A basic Horn formula 6y V- - -V, is a strict basic Horn formula if exactly
one #; is atomic and, of course, the others are negated atomic formulas. A
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strict Horn sentence is built up from strict basic Horn sentences using A, 3,
and V.

For a complete atomic C' Az 2 and a € A, 1.6(iii) implies that, if a < dsj
for 7 # j, then a belongs to the minimal subalgebra B of U such that
2 € Adj(38). This observation and the fact, that ¢i(dij-cix) = ¢jx whenever
¢ # j, are used in the proof below.

Proposition 4.2. Suppose 2 is a complete atomic C Az, B is a subalgebra
of 2 such that A € Adj(98B), and ¢ is a universal strict Horn sentence such
that every variable v which occurs in ¢ is either cylindric dependent or v
has an occurrence in a negated atomic clause =) of ¢ such that ) implies
v < d;; for some i # j. Then

@ holds in 2 iff ¢ holds in 8.

Proof. For the non—trivial implication assume that ¢ has the form
Voo .. Yo (=0g V-V =0, V6,)

where 0; is atomic for i < n 41, ¢ holds in 8, and z € A¥ is a sequence
that satisfies 6y A --- A G,—1 in . Define a sequence 2’ as follows:

i * CRT; if wv;is cylindric dependent on ciand i is the least
o [ <3,1l+#k
I 0 if v; does not occur in ¢
z; otherwise

Then 2/ € BY and 2’ satisfies 6y A --- A Op—1 in B. Since ¢ holds in B, it
follows that 2’ satisfies 6, in % and hence in 2. Because the values of 2,
different from the values of z, are assigned to cylindric dependent variables,
x satisfies 6, in 2. Hence, ¢ holds in 2. §

Lemma 4.3. Suppose B is a complete atomic integral CAs, x # 0, and
¢ - c;jx < di; for some ¢ # j. Then x is an atom.

Proof. Suppose a,b € AtB, a,b < z < ¢z - cjz < d;;. Choose an atom
y < cia - cjb. [This is possible since B is integral.] Then y < ¢;z - c;x < dyj
and ¢y = cia s0 y = dij - ¢;y = dij - c;a = a. Similarly, y = b; S0 a = b and
T is an atom (= ¢z - ¢;x). §

The following result gives a negative answer to Problem 1 posed in
Monk [12].
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Theorem 4.4. Let My = ({0,1,2},0,{0}) where o is given by the table

o |0 1 2
0 [0 1 2
112 02
2 |2 0 1

Then B[My] € [MV-LOOP], but B9y ¢ SAdjB[LOOP]. Thus,
B(MV-LOOP] ¢ SAdj B[LOOP).

Proof. M is clearly a multi-valued loop. Consider the sentence :
Vz,y, 2(cox - cox < dop Aery - cr2 =0 — ca(e1y - o) - calerz - cox) = 0).

1 fails in B[Mp] under the assignment z — a = {(1,0,1)}, y — b =
{(1,2,2)}, and z — ¢ = {(1,1,2)}.

7

Figure 1
The theorem follows from the fact that ¢ holds in SAdj®B[LOOP].
Since v is a universal strict Horn sentence that satisfies the hypothesis of
Proposition 4.2, it suffices to show that ¢ holds in %B[9] where 92 is a loop.
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Suppose z, y, z satisfy the hypothesis of ¥ and ca(c1y-coz) - ca(c12- coz) # 0.
Then = # 0 so, by Lemma 4.3, z = {(a,e,a)} for some a € M. Choose
u € R (= the graph of o) such that u € ca(c1y - cow) - caler2 - coz). Then
there exist v € c1y - coz and w € c12 - cox such that uy = vy = ws. Since
v € cor and w € cpx, v = a = wy. From vy = wy and vy = wy we obtain
w = v € c1y - c1z because M is a loop. This contradicts the hypothesis
c1y - c1z = 0. Hence ¢ holds in B[] as desired. §

The 10 atom C Az B[Mp] constructed in Theorem 4.4 has minimal size
among integral C'Az’s that are not quasigroup representable. Up to isomor-
phism there are exactly four 10 atom CAs’s that are not quasigroup rep-
resentable. Three of these, like B[] do not belong to SAdj B[LOOP];
the fourth is the algebra 2 given in 4.6 below. The following proposition
is the key step to show that every integral CAs with 9 or fewer atoms
is in SB[GROUP].

Proposition 4.5. Suppose J is the polygroup ({0, 1},0,0) with o given by
the table

0
0 1
1 0,1

~ )0

Then SAdjB[3] C SB|[GROUP).

The idea of the representation is to choose, for each 2 € Adj B[7], a
sufficiently large field F' such that the element a = {(z,y,2) € F® : 2z = z+y
and z,y, 2 # 0} can be decomposed into enough subsets, each cylindrically
equivalent to a, so that the subalgebra of B[(F, +,0)] generated by these
subsets is isomorphic to 2. ‘

The next example will show that the Adj operation cannot be elim-
inated from Theorem 3.4. A sentence involving the notion of a ”small”
element in 2 will be used. The notion of ”small” used here should not
be confused with the notion in 3.1.56 of [9]. Intuitively, an atom z < dy;
(i # 7) is small if ¢;z - ¢c;z < d;j. An arbitrary element x in 2 is small if its
"coordinates” (cf., 3.2(2)) in the partial multi-valued loop My are all small
atoms. Formally, we let small(z) abbreviate the formula:

sgeoxr - s3sfcor <dpp A ez steiw <dig A eox - s5coT < diz.
Theorem 4.6. Adj®B[GROUP] ¢ SB[MV-LOOP].

Proof. Let % € Adj®B[7s] be obtained by adjoining an atom ¢ to act like
c=1{(1,1,2)}, see, e.g., 3.2.69 of [9]. Clearly, 2 € AdjB[GROU P]
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i
vy

Figure 2
It remains to show that 2 ¢ SB[MV-LOOP]. Consider the sentence

: Va(r # 0 Asmall(z) — z is an atom).

It is easy to check that ¢ fails in 2 under the assignment z — c+¢. Since ¢
is equivalent to a universal sentence, to prove the theorem, it suffices to show
that ¢ holds in B[9] where 9 is a multi-—valued loop. Suppose z satisfies
the hypothesis of ¢ and let ag = dy9 - sgcox, a1 = dyg -1z, and a9 = dig -1z
(the "coordinates of ). Then 0 # a; < dys for each 7. Since z is small,
Lemma 4.3 implies that each a; is an atom, say a; = {(e,u;,u;)} for each
¢ < 3. Now, suppose v € . Then c1a1 = 17 and caag = cox implies v = u
and vg = ug . Also, caag = sgcom implies {(uo,€,u0)} = dga - caag = coz
which gives vy = ug. Therefore, z = {(ug,u1,us)} is an atom. Thus, ¢
holds in SB[MV-LOOP]. Which completes the proof. §

The sentence that says

VaVy(cox = coy A c1x = c1y A cox = cay A small(z) — z = y)
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also works in the proof of Theorem 4.6. Does the algebra 2 in 4.6 show
Adj B[GROUP] ¢ SB[pMV-LOOP)?

We now briefly consider the class RC'Az. Since SB[GROUP] C RC As,
Proposition 4.5 suggests it may be possible for every adjunction of an RC A
to be in RCA3. We see below (Theorem 4.8) that this is not always the
case. First, a technical lemma. :

Lemma 4.7. Suppose 2 is a complete atomic integral RC Ay isomorphic
to a cylindric set algebra with base U and |E,j| < w for some i # j such
that

(1) for every x € Eyj, ¢z - cjm < dy.

Then |U| = | Ej;].

Proof. Suppose F' embeds 2 into the full set algebra with base U. For 1, j
that satisfy the hypothesis define a relation f, C U x U for each z € E;; by

Fl@)={ueU®:u;=u; and (up,w)€ fy}

where {7, j,k} = 3. Then
(2) [ is a function for each z € E;j.

For suppose u,v € F(z) and'uy = v, . Let w € U3 with w; = Uy,
w; = v; and wp = up = vg. Then, by (1), w € ¢;{u} - ¢;{v} < D;j; so
w; = w; which gives u = v.

Since 2 is integral
(3) domain(f,) = U =range(f,) for all z € E;;.

Since F is an embedding,
(4) z#yimplies f, N f, = 0.

For a,b € U choose v € D;; = X{F(z) : z € E;;} with vy = a, and
v; = v; = b. Because |E;| < w, v € F(z) for some z. This gives
(5) forallaeU, U{fs(a):z € E;j} =U.

Now, fix a € U. By (2)—(5), the map x — f,(a) gives a bijection of E;;
onto U. Hence |U| = |E;;|. §

Theorem 4.8. Suppose 2 is a complete atomic integral RC'As for which
My is a finite loop. Then My is a group and A = B[My].

Proof. If % € RCA3 , then B[My] € RCAs. Monk has shown (Cor. 2.3
n [12] and also 3.2.73 of [9]) that if the complex algebra of a loop is in
RCAj3 , then the loop is a group. Hence, we may assume My is a group
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G with n elements and 2 € Adj®B[G]. Then Ef, = E?;-[G] has n elements
and ¢1x - cox < dyg for all € Fy;. Suppose F' is an isomorphism of 2 onto
a set algebra with base U. By Lemma 4.7, |U| = n. Since coc1 F(z) = U®
for each z € A, |F(z)| > n. Also, |AtB[G]] = n?; so if A is a proper

adjunction of B[G], |AtA| > n? + 1. But then

|U3| = Z |F(z)] > (n? +1)n > nd.
z€ AL

Thus, 2 is not a proper adjunction of € [G], i.e., A =€ [G]. &

As a corollary we note that Theorem 4.8 implies that the C' Az 2 in
Theorem 4.6 is not in RC As. Is it true that, for every partial multi—valued
loop 9m, if B[9M] has some proper adjunction that is in RC'As, then every
proper adjunction of B[] is in RCAs?

A representation of a complete C'A3 as a set algebra is called completely
additive if the isomorphism preserves arbitrary sums. Our final discussion,
concerning Problem 2 in Monk [12], will use results about polygroups and
chromatic polygroups from Comer [6], [7].

A polygroup 9 determines an integral relation algebra
AM] = (SBM, U, N, ~, 0, M, 0,71 {e})

where X oY = U{aob:a€ X, b€ Y} and X! = {a"!:a€ X} for all
X, Y € M. The functor M > A[RA] gives a dual equivalence between the
category of polygroups and the category of complete atomic integral RA’s
(cf., 3.3 of [6]) while the functor 9 — B[M] gives a dual equivalence be-
tween polygroups and a full subcategory of the category of complete atomic
integral C A3’s. The two functors 2A[90] and B[M] are closely related. In fact
A[MM] can be intrinsically related to B[9M] by a correspondence similar to
the construction given in 5.3.7 of [9] (cf., Remark 3.9). This paper makes no
use of this correspondence. The following extends slightly Proposition 2.4
of [7].

Proposition 4.9.

(i) For a multi-valued loop 9, B[M] has a completely additive
» representation iff 9 is a chromatic polygroup.
(ii) If a complete atomic integral C A3 2 has a completely additive
representation, then My is a chromatic polygroup.
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Proof. (i) Equations (Ej)—(FEy), used in Theorem 3.7, are among those
known to hold in RC A3’s. Hence, if B[] is in RC A3, M is a polygroup.
(i) now follows from 2.4 of [7].

(i) follows immediately from 3.4, the fact B[9My] is embeddable in %, and
part (i). #

The following gives a strong negative answer to Problem 2 in Monk [12].

Theorem 4.10. There exist integral RC As’s not in SB[GROU P]. More-
over, the class SB[GROU P] is not finitely axiomatizable over the class of
integral RC Ag’s.

Proof. The examples of integral RRA’s not in SA[GROU P], constructed
in McKenzie [11], have the form 2A[9] where 9 is a chromatic polygroup
not in Qs(GROUP). (See [6].) For such an 9, B[9N] is an integral RC A3
by 4.9(1) and B[M] ¢ SB[GROU P] by properties of the functor B[-]. By
2:2 and 4.2 of [7] there exist finite integral RC' A3’s B[M;] ¢ SB[GROU P},
for ¢ € w, such that an ultraproduct J], B[] is in SB[GROU P]. Thus,
SB[{GROU P] is not finitely axiomatizable. §

The non-finite axiomatizability proof above is a CAs version of the

result in McKenzie [11] concerning group representable RA’s.
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