AN ALGEBRAIC APPROACH TO THE APPROXIMATION OF INFORMATION

Stephen D. COMER¹
The Citadel, Charleston, SC 29409, USA

Abstract. This paper is based on the notion of an information system $< U, \Omega, V, f>$ in the sense of Pawlak. Every set of knowledge $P\subseteq \Omega$ determines a closure operator on U. The class of Boolean algebras with added operations determined by all sets of knowledge are axiomatized. As a consequence of the representation theorem information systems can be constructed that have a prescribed lattice of functional dependencies.

1. Introduction

This paper deals with the notion of an information system $S=\langle U,\Omega,V,f\rangle$ in the sense of Pawlak [6]. These information systems have been studied under various names: databases, knowledge representation systems, decision tables, and learning systems ([4], [7], [8], [10]). In the approach taken by Pawlak, a subset P of Ω is called a set of knowledge and determines an approximation space $\langle U,\theta_P\rangle$ and a closure operator \bar{P} on U. In the methodology of rough concepts, $\bar{P}X$ denotes the P-upper approximation of a concept $X\subseteq U$. The closure algebras $\langle \mathfrak{Sb}U,\bar{P}\rangle$, where $\mathfrak{Sb}U$ is the Boolean algebra of all subsets of U, can be characterized as complete atomic cylindric algebras of dimension 1 (Proposition 14).

Often one is interested in relationships between various sets of knowledge. An algebraic framework for studying this situation is developed in this paper. Every information system S determines a Boolean algebra with unary operators $<\mathfrak{Sb}U, \overline{P}>_{P\subseteq\Omega}$ which is called a knowledge approximation algebra of type Ω derived from S. We propose a (non-elementary) set of axioms for the class of all such algebras of a fixed type and show that the axioms have the intended models (Theorem 11). Finally, in Section 4 it is shown that the first-order theory of knowledge approximation algebras of type Ω , as well as the theory of its finite models, is undecidable whenever $|\Omega| \geq 2$.

Throughout the paper we assume that Ω is a finite set. We use [2] as our basic reference for notation; in particular, SbX denotes the collection of all subsets of X

¹Work supported in part by a grant from The Citadel Development Foundation.

and $\mathfrak{Sb}X$ denotes the Boolean algebra with universe SbX.

2. Basic Definitions and Elementary Properties

An information system is a 4-tuple $S=\langle X,\Omega,V,f\rangle$ where X is a set, Ω is a finite set, V is a function with $\operatorname{Dom} V=\Omega$ and $f:X\longrightarrow \prod_{a\in\Omega}V_a$. For each $P\subseteq\Omega$, define a relation θ_P for $x,y\in X$ by

$$x\theta_P y \iff \forall a \in P \ (fx)_a = (fy)_a$$

Clearly θ_P is an equivalence relation on X. The pair (X, θ_P) is called an approximation space for knowledge P and the θ_P -classes, i.e., the subsets $\theta_P x = \{\ y : x\theta_P y\ \}$ are called P-elementary categories or concepts indiscernible according to knowledge P. A set $A \subseteq X$ is definable in knowledge P if A is a union of θ_P -classes, i.e., $A = \bigcup \{\ \theta_P x : x \in A\ \}$.

Associated with an approximation space (X, θ_P) there is a closure operator \bar{P} and an interior operator P on X. Define $\bar{P}: SbX \longrightarrow SbX$ and $P: SbX \longrightarrow SbX$ by

$$\begin{split} \overline{P}(A) &= \bigcup \ \{ \ \theta_P x : x \in A \ \} \quad \text{ for } A \subseteq X \text{ and } \\ \underline{P}(A) &= \bigcup \ \{ \theta_P x : \theta_P x \subseteq A \ \} \quad \text{for } A \subseteq X. \end{split}$$

Pawlak ([7],[8]) calls $\bar{P}(A)$ the P-upper approximation of A and $\underline{P}(A)$ the P-lower approximation of A. Note that the subsets of X that are definable in P are the fixed points of \bar{P} (or the \bar{P} -closed subsets).

The structure $\mathfrak{B}_S = \langle SbX, \cup, \cap, \sim, \emptyset, X, \bar{P} \rangle_{P \subseteq \Omega}$ (or $\langle \mathfrak{S}bX, \bar{P} \rangle_{P \subseteq \Omega}$ for short) is called the knowledge approximation algebra of type Ω derived from the information system S. The reduct $\mathfrak{RO}_P\mathfrak{B}_S = \langle SbX, \cup, \cap, \sim, \emptyset, X, \bar{P} \rangle$ is called the (upper) approximation closure algebra of P.

The next definition presents axioms for an abstract knowledge approximation algebra of type Ω . The idea is to abstract the properties of the closure operator \bar{P} as an operator κ_{P} .

Definition. A structure $\mathfrak{B} = \langle \mathcal{B}, \kappa_P \rangle_{P \subseteq \Omega}$ is a knowledge approximation algebra of type Ω (recall that Ω is finite) if $\kappa_P \in B^B$ for each $P \subseteq \Omega$ and the following axioms hold for all $x, y \in B$ and $P, Q \in \Omega$:

- (A₀) $\mathcal{B} = \langle B, +, \cdot, -, 0, 1 \rangle$ is a complete atomic Boolean algebra,
- $(A_1) \quad \kappa_D 0 = 0,$

- $(A_2) \quad \kappa_D x \geq x,$
- $(A_3) \quad \kappa_D(x \cdot \kappa_D y) = \kappa_D x \cdot \kappa_D y,$
- (A₄) $x \neq 0$ implies $\kappa_0 x = 1$,
- (A₅) $\kappa_{P \cup Q} x = (\kappa_P x) \cdot (\kappa_Q x)$ if x is an atom of \mathcal{Z}

 $\mathfrak B$ is called reduced if $\kappa_\Omega x=x$ for all $x{\in}B.$ We denote the class of all knowledge approximation algebras of type Ω by KA_Ω and refer to a member of this class as a $\mathrm{KA}_\Omega.$

Observe that if $\mathfrak{B}=<\mathscr{L}\kappa_P>_{P\subseteq\Omega}$ is a KA_Ω , then axioms (A_0) — (A_3) show that $<\mathscr{L}\kappa_P>$ is a CA_1 for each $P\subseteq\Omega$, i.e., each κ_P is a cylindrification in the sense of [2]. The dual operation κ_P^0 associated with a cylindrification κ_P (cf., 1.4.1 of [2]) is defined by $\kappa_P^0 x=-\kappa_P(-x)$ for all $x\in B$.

Proposition 1. If $S = \langle X, \Omega, V, f \rangle$ is an information system, the knowledge approximation algebra \mathfrak{B}_S of type Ω derived from S is a KA_Ω . In particular, every reduct $\mathfrak{Rd}_P\mathfrak{B}_S = \langle SbX, \cup, \cap, \sim, \emptyset, X, \bar{P} \rangle$ is a CA_1 .

PROOF. Clearly (A₀),(A₁), and (A₂) hold.

 (A_3) $\bar{P}(A \cap \bar{P}B) = \bar{P}A \cap \bar{P}B$ for $A, B \subseteq X$.

Suppose $x \in \bar{P}A \cap \bar{P}B$. Then $\theta_P \cap A \neq \emptyset$ and $\theta_P \cap B \neq \emptyset$. Since $\bar{P}B$ is a union of θ_P —classes and $x \in \bar{P}B$, $\theta_P x \subseteq \bar{P}B$. Thus, $A \cap \bar{P}B \cap \theta_P x = A \cap \theta_P x \neq \emptyset$. Hence $x \in \theta_P x \subseteq \bar{P}(A \cap \bar{P}B)$; so the inclusion 2 holds. Now, suppose $x \in \bar{P}(A \cap \bar{P}B)$. Then $A \cap \bar{P}B \cap \theta_P x \neq \emptyset$; so $A \cap \theta_P x \neq \emptyset$ (therefore $x \in \bar{P}A$) and $\bar{P}B \cap \theta_P x \neq \emptyset$ (which implies $x \in \theta_P x \subseteq \bar{P}B$ because $\bar{P}B$ is a union of θ_P —classes). Hence the inclusion \subseteq holds.

 $(A_4) \quad \emptyset \neq A \subseteq X \implies \overline{\emptyset}A = X$

If $x \in A$ and $y \in X$, then $x \theta_{\emptyset} y$ holds vacuously. So $\overline{\emptyset}\{x\} = X$ and (A_4) follows.

 $(A_5) \quad \overline{PUQ}\{x\} = \overline{P}\{x\} \cap \overline{Q}\{x\} \text{ for all } x \in X.$

If either P or Q is empty, the result follows from (A_4) . Assume $P,Q \neq \emptyset$. Suppose $y \in \overline{P}\{x\} \cap \overline{Q}\{x\}$. Then $x\theta_P y$ and $x\theta_Q y$. So, if $a \in \theta_{P \cup Q}$, then $(fx)_a = (fy)_a$ because either $a \in P$ or $a \in Q$. Therefore, $x\theta_{P \cup Q} y$, i.e., $y \in \overline{P \cup Q}\{x\}$. Thus, the inclusion \supseteq holds. Now suppose that $y \in \overline{P \cup Q}\{x\}$ so $x\theta_{P \cup Q} y$. Since $(fx)_a = (fy)_a$ for all $a \in P \cup Q$, fx and fy agree on all values in P and on all values in Q. Thus $x\theta_P y$ and $x\theta_Q y$. Hence the inclusion \subseteq holds.

Note that the algebra \mathfrak{B}_S derived from an information system $S=<\!X,\!\Omega,V,\!f\!>$ is reduced if and only if f is one—one.

Corollary 2. The dual of \bar{P} in \mathfrak{B}_S is \underline{P} , i.e., $\kappa_P^{\partial} = \underline{P}$ when $\kappa_P = \bar{P}$.

PROOF. Since $\kappa_P^{\partial}x = -\kappa_P(-x)$ it suffices to show $-\bar{P}(-A) = \underline{P}A$ for $A \subseteq X$. This follows since both $-\bar{P}(-A)$ and $\underline{P}A$ are unions of θ_P -classes and $\theta_Px \subseteq A$ iff $\theta_Px\cap -A = \emptyset$ iff $\theta_Px \subseteq -\bar{P}(-A)$.

The result below summarizes properties from Sections 1.2 and 1.4 of [2] which hold because $\langle B, \kappa_P \rangle$ is a CA₁ for each $P \subseteq \Omega$. Thus, the properties follow from axioms (A₀)-(A₃) only. It is well known that these properties hold for closure operators \bar{P} and \underline{P} associated with approximation spaces ([7], [8]).

Proposition 3. (i) $\kappa_{P}^{\partial} x \leq x \leq \kappa_{P} x$.

(ii)
$$\kappa_P^{\partial} 0 = \kappa_P 0 = 0$$
 and $\kappa_P^{\partial} 1 = \kappa_P 1 = 1$.

(iii)
$$x \le y \implies \kappa_P x \le \kappa_P y$$
 and $\kappa_P^{\partial} x \le \kappa_D^{\partial} y$.

(iv)
$$\kappa_P(x+y) = \kappa_P x + \kappa_P y$$
 and $\kappa_P^{\partial}(x \cdot y) = (\kappa_P^{\partial} x) \cdot (\kappa_P^{\partial} y)$.

 $\text{(v)} \quad \text{If } \Sigma_{\underline{i}}z_{\underline{i}} \text{ exist, then } \Sigma_{\underline{i}}\kappa_{P}z_{\underline{i}} \text{ exist and } \kappa_{P}(\Sigma_{\underline{i}}z_{\underline{i}}) = \Sigma_{\underline{i}}\kappa_{P}z_{\underline{i}}.$

(vi)
$$\kappa_P \kappa_P x = \kappa_P^{\partial} \kappa_P x = \kappa_P x$$
.

$$\mbox{(vii)} \ \kappa_P^{\partial} \kappa_P^{\partial} x = \kappa_P \kappa_P^{\partial} x = \kappa_P^{\partial} x.$$

(viii) If
$$\mathbb{I}_{\mathbf{i}} \kappa_P z_{\mathbf{i}}$$
 exist, then $\kappa_P(\mathbb{I}_{\mathbf{i}} \kappa_P z_{\mathbf{i}}) = \mathbb{I}_{\mathbf{i}} \kappa_P z_{\mathbf{i}}$; in particular, $\kappa_P(\kappa_P x \cdot \kappa_P y) = \kappa_P x \cdot \kappa_P y$.

The following lemma describes natural relationships between approximation operators which will be used in Section 3.

Lemma 4. (i)
$$\kappa_P x \leq \kappa_Q x$$
 for all $x \in B$ whenever $Q \subseteq P \subseteq \Omega$. (ii) $x \leq \kappa_P y \implies \kappa_P x \leq \kappa_P y$.

PROOF. (i) By additivity 3(v), it suffices to consider $x \in At\mathfrak{B}$ and $Q \subseteq P$. Then, by (A_5) ,

$$\kappa_P x = \kappa_{P \cup Q} x = (\kappa_P x) \cdot (\kappa_Q x) \le \kappa_Q x.$$

(ii) follows from 3(iii) and 3(vi).

3. Representation

The goal of this section is to show that every KA_{Ω} can be obtained from an information system, i.e., axioms (A_0) – (A_5) have the intended models. We then examine the relationship between approximation closure algebras and CA_1 's.

The first step is to understand the structure of the class of approximation operators of a KA_Ω , that is, we want to characterize the class $\{\kappa_P: P \subseteq \Omega\}$ of closure operators of a KA_Ω \mathfrak{B} . By additivity $\mathfrak{J}(\mathsf{v})$ and the fact \mathfrak{B} is complete and atomic, each κ_P is determined by its values on $\mathrm{At}\mathfrak{B}$. Thus κ_P may be viewed as a member of $B^{\mathrm{At}\mathfrak{B}}$. More precisely, let $\bar{\kappa}_P = \kappa_P | \mathrm{At}\mathfrak{B}$, the restriction of κ_P to the atoms. By (A_5) , $\{\bar{\kappa}_P: P \subseteq \Omega\}$ is a meet—subsemilattice of $< B^{\mathrm{At}\mathfrak{B}}$, $\wedge >$ where \wedge is defined pointwise in $B^{\mathrm{At}\mathfrak{B}}$, i.e., $(f\wedge g)(x) = fx\cdot gx$ for $x\in \mathrm{At}\mathfrak{B}$,. In fact, (A_5) shows that the map that sends $P \longmapsto \bar{\kappa}_P$ is a semilattice morphism $< \mathfrak{Sb}\Omega, \cup > \to < B^{\mathrm{At}\mathfrak{B}}, \wedge >$. Instead of using the meet—subsemilattice of $< B^{\mathrm{At}\mathfrak{B}}, \wedge >$ given above, we use an isomorphic subsemilattice of the partition lattice $\Pi(\mathrm{At}\mathfrak{B})$ whose elements consist of the partitions that are kernels of the $\bar{\kappa}_P$'s.

Definition 5. For a KA $_{\Omega}$ $\mathfrak{B}=\langle B,\kappa_{P}\rangle_{P\subseteq\Omega}$ the partition semilattice of \mathfrak{B} , denoted by $L_{\mathfrak{B}}$, is the structure $\langle\{T_{P}:P\subseteq\Omega\ \},\cap,U^{2}\rangle$ where $U=\mathrm{At}\mathfrak{B}$ and, for $P\subseteq\Omega$, $a,b\in U$

$$aT_Pb \iff \kappa_Pa = \kappa_Pb$$

(or equivalently, $aT_Db \iff a \leq \kappa_Db$).

Lemma 6. (i) T_P is an equivalence relation on U for all $P \subseteq \Omega$.

- (ii) $T_{\emptyset} = U^2$.
- (iii) $T_P \cap T_Q = T_{P \cup Q}$ for all $P, Q \subseteq \Omega$.
- (iv) $L_{\mathfrak{B}}$ is a meet-subsemilattice of $\Pi(U)$.
- (v) The map $P \longmapsto T_P$ is a morphism of $\langle Sb\Omega, \cup, \emptyset \rangle$ onto $L_{\mathfrak{B}}$.

PROOF. (i) obvious and (ii) follows from (A_4) . Parts (iv) and (v) are immediate from (i) - (iii).

(iii). Suppose $(a,b)\in T_P\cap T_Q$. Then $\kappa_P a=\kappa_P b$ and $\kappa_Q a=\kappa_Q b$. By (A₃),

$$\kappa_{P \cup Q} a = \kappa_P a \cdot \kappa_Q a = \kappa_P b \cdot \kappa_Q b = \kappa_{P \cup Q} b$$

since $a,b \in \operatorname{At}\mathfrak{B}$. Therefore, the inclusion \subseteq holds. Now, suppose $\kappa_{P \cup Q} a = \kappa_{P \cup Q} b$. Then $b \le \kappa_{P \cup Q} b = \kappa_{P \cup Q} a \le \kappa_{P} a$ so $\kappa_{P} b \le \kappa_{P} a$ by 4(ii). Similarly $\kappa_{P} a \le \kappa_{P} b$ so $\kappa_{P} a = \kappa_{P} b$ and $(a,b) \in T_{P}$. Likewise $(a,b) \in T_{Q}$; so the inclusion \supseteq holds.

$$\Leftrightarrow T_{\{a\}}x = T_{\{a\}}y$$

$$\Leftrightarrow (fx)_a = v_{a,b} = (fy)_a \text{ where } b = T_{\{a\}}x \text{ (by Def. 9)}$$

$$\Leftrightarrow y\theta_{\{a\}}x$$

$$\Leftrightarrow y \in \theta_{\{a\}}x = \kappa_{\{a\}}^{\mathfrak{B}_s}(x) = \kappa_{\{a\}}^{\mathfrak{B}_s}(gx).$$

Hence, (2) holds. Now, for $x \in At\mathfrak{B}$ and $P \neq \emptyset$, (1) follows from (2) and (A₅):

$$g(\kappa_P x) = g(\prod_{a \in P} \kappa_{\{a\}} x) = \prod_{a \in P} g(\kappa_{\{a\}} x) = \prod_{a \in P} \kappa_{\{a\}} (gx) = \kappa_P (gx).$$

Observe that, by (A₄), (1) obviously holds if $P = \emptyset$. Hence, g is an isomorphism of \mathfrak{B} onto $\mathfrak{B}_{S(L)}$ as required.

The next few observations deal with consequences of Theorem 11.

REMARK 12. Theorem 11 shows that axioms (A_0) — (A_5) completely characterize the class of knowledge approximation algebras derived from information systems. Axioms (A_1) — (A_3) are equations while (A_4) and (A_5) are not. The lemma below shows the class of all KA_{Ω} 's is not equational.

Lemma 13. Every member of $\,{\bf S}({\rm KA}_{\Omega})\,$ is a simple (universal) algebra.

PROOF. It suffices to show, from axioms (A_0) — (A_4) , that any congruence relation on a KA_Ω $\mathfrak B$ that is not the identity relation is the universal relation. If θ is a congruence on $\mathfrak B$ and $\theta \neq Id$, then θ is a Boolean congruence; so there exist an atom $x \in B$, $x \theta 0$. Then $1 = (\kappa_\emptyset x) \theta(\kappa_\emptyset 0) = 0$ by (A_4) . Hence, θ is the universal congruence.

As noted in Proposition 1 every approximation closure algebra $<\mathfrak{Sb}U,\bar{P}>$ associated with an information system is a complete atomic CA_1 . Below we see that every complete atomic CA_1 has such a representation.

Proposition 14. Let $P_0 \subseteq \Omega$ with $P_0 \neq \emptyset$. Then

- (i) Every complete atomic CA₁ is isomorphic to an approximation closure algebra $\mathfrak{Ro}_{P_0}\mathfrak{B}_S = \langle \mathfrak{Sb}U, \bar{P}_0 \rangle$ for some information system S.
- (ii) Every $\widetilde{C}A_1$ is embeddable in an approximation closure algebra $\mathfrak{Ro}_{P_0}\mathfrak{B}_S$ for some S.

PROOF. (i) Given a complete atomic $CA_1 \mathfrak{A} = \langle A, c_0 \rangle$ we define a system $\mathfrak{B} = \langle B, \kappa_p \rangle_{P \subseteq \Omega}$ by letting the Boolean algebra B = A, $\kappa_p = c_0$ for all $P \neq \emptyset$, and, for all $x \in A$, $\kappa_0 x = 1$ if $x \neq 0$ and equal 0 otherwise. It is clear that \mathfrak{B} is a KA_{Ω} so, by

Theorem 11, $\mathfrak{B} \cong \mathfrak{B}_S$ for some information system S. Thus, $\mathfrak{A} = \mathfrak{Ro}_{P_0} \mathfrak{B} \cong \mathfrak{Ro}_{P_0} \mathfrak{B}_S$ as desired.

(ii) follows from (i) by the fact that every CA_1 is embeddable in a complete atomic one (cf., 2.7.20 of [2]).

The final result of this section uses Proposition 8 and Theorem 11 to create an information system with a prescribed relation of functional dependencies.

Theorem 15. Every finite lattice is isomorphic to the partition semilattice of some KA_{Ω} . Moreover, this algebra may be chosen as the algebra derived from the information system S(L') where L' is a representation of the lattice as a meet semilattice of partitions.

PROOF. Given a finite lattice L first observe that L is isomorphic to a meet—semilattice L' of partitions. This is immediate from the Pudlák and Tuma solution [9] of Whitman's problem; however, we provide a simple direct construction. For $x \in L$ let h(x) be the equivalence relation on L defined for $a, b \in L$ by

$$ah(x)b \iff a = b \text{ or } a,b \leq x.$$

Then $h:L \longrightarrow \Pi(L)$ is a meet—semilattice isomorphism of L onto $L'=\{h(x):x\in L\}\subseteq \Pi(L)$. Now, let $\Omega=L$ and, for $P\subseteq \Omega$, set $T_P=\bigcap_{x\in P}h(x)$. Note that $T_P=h(\wedge P)$ since h is a meet—isomorphism of L onto L'. Then $L'=\{T_P:P\subseteq \Omega\}$ and $(A_P)=(A_P)$ is a partition semilattice. Since the map that sends $(A_P)=(A_P)$ is a semilattice morphism from $(A_P)=(A_P)=(A_P)$ onto A_P it follows from Proposition 8 that A_P is isomorphic to the partition semilattice of some $(A_P)=(A_P)=(A_P)$ is a paplying Theorem 11 to $(A_P)=($

4. Decision Problems

The goal of this section is to settle the decision problems for the first—order theory of KA_{Ω} for every finite Ω . The answers are closely related to the ones obtained for cylindrification algebras in [1] but the details differ. We will use certain basic facts about finitely inseparable theories which can be found in either [1] or Monk [5] (results 15.7, 15.16, and 16.56).

Let Eq denote the theory of two equivalence relations, i.e., the models of Eq are relational structures $\langle X,R,S\rangle$ where R and S are equivalence relations on X. The theory Eq is finitely inseparable by 16.56 of Monk [5]. To show that a theory T

Remark 7. (i) $L_{\mathfrak{B}}$ is actually a <u>lattice</u>, but not necessarily a sublattice of $\Pi(U)$. The join ⊕ is defined by

$$T_P {}^{\oplus} T_Q = \cap \{ \ T_R : R \subseteq \Omega \ \text{ and } \ T_R \supseteq T_P \ \text{ and } \ T_R \supseteq T_Q \}.$$

In Lee [4] the lattice $L_{\mathfrak{B}}$ is called the $\mathit{relation\ lattice}$ of S when $\,\mathfrak{B}\,$ is the knowledge approximation algebra induced by an information system (database) S. The ordering relation of this lattice expresses the functional dependencies that are valid in S.

- We say that a collection of equivalence relations $L = \langle \{T_P : P \subseteq \Omega \}, \cap, U^2 \rangle$ is a partition semilattice if properties 6(i), 6(ii), and 6(iii) hold. Of course, Lemma 6 shows that $L_{\mathfrak{B}}$ is a partition semilattice.
- (iii) The collection of relations that form a partition semilattice L is closely related to the notion of a cylindric atom structure (cf., 2.7.40 of [2]). We say that a relational system $< U, T_P >_{P \in \Omega}$ is a knowledge approximation atom structure if for all $P,Q \subseteq \Omega$
 - (1) T_D is an equivalence relation on U,

 - (2) $T_{\emptyset} = U^2$, and (3) $T_P \cap T_Q = T_{P \cup Q}$

We will use partition semilattices and atom structures interchangeably. The next result characterizes the partition semilattices obtained from KAOS.

PROPOSITION 8. A meet-subsemilattice of $\Pi(U)$, $\langle L, \cap, U^2 \rangle$, is a partition semilattice of some $\mathfrak B$ in KA_Ω if and only if there is a semilattice morphism of $<\!\mathit{Sb}\Omega, \cup, \emptyset\!>$ onto L.

Proof. The \Longrightarrow direction follows from 6(v). For \Longleftarrow , suppose $L=\{\ F_P: P\subseteq \Omega\ \}$. For each equivalence relation F_P define $F_P^*: SbU \longrightarrow SbU$ by

$$F_P^*X = \bigcup_{x \in X} \{ y \in U : xF_P y \}.$$

Then $\mathfrak{B}'=<\mathfrak{Sb}\,U, F_P^*>_{P\subseteq\Omega}$ is a KA $_\Omega^*$. Clearly, $\mathrm{At}\mathfrak{B}'=\{\{x\}:x\in U\}$. Using the natural correspondence between the atoms of \mathfrak{B}' and the elements of U we obtain a knowledge approximation algebra $\, \mathfrak{B} \,$ isomorphic to $\, \mathfrak{B}' \,$ such that $\, \operatorname{At} \mathfrak{B} = \, U \,$ and $L_{\mathfrak{R}}$ is L.

Another way to state Proposition 8 is to say that a meet-subsemilattice of $\Pi(\mathit{U})$ is a partition semilattice of a KA_{Ω} if and only if its elements are the relations of a knowledge approximation atom structure.

We now construct an information system from a partition semilattice.

Definition 9. Suppose $L=<\{T_P:P\subseteq\Omega\ \},\cap,U^2>$ is a partition subsemilattice of $\Pi(U)$ and Ω is finite. The structure

$$S(L) = \langle U, \Omega, V, f \rangle$$

called the information system of L, is defined in the following way. Choose a function V on Ω such that $|V_a|$ equals the cardinality of the set of $T_{\{a\}}$ —blocks for all $a \in \Omega$. We denote the elements of V_a by $\mathbf{v}_{a,b}$ where $b \in U/T_{\{a\}}$ (i.e., $b = T_{\{a\}}x$ for some $x \in U$). Now, define $f: U \longrightarrow \prod_{a \in \Omega} V_a$ by

$$f(x)_a = v_{a,b}$$

for all $x \in U$, $a \in \Omega$, and $b = T_{\{a\}}x$. Of course, V_a may be infinite if U is infinite.

It is obvious that

LEMMA 10. S(L) is an information system.

Theorem 11. If $\mathfrak{B}=\langle B,\kappa_P\rangle_{P\subseteq\Omega}$ is a KA Ω where Ω is finite, $L=L_{\mathfrak{B}}$ is the partition semilattice of \mathfrak{B} , and S=S(L) is the information system of L, then $\mathfrak{B}\cong\mathfrak{B}_{S(L)}$, the knowledge approximation algebra of S(L).

PROOF. Suppose $L=\langle\{T_P:P\subseteq\Omega\},\cap,U^2\rangle$ where $U=\operatorname{At}\mathfrak{B}$ and $S(L)=\langle U,\Omega,V,f\rangle$ is given in Definition 9. Consider the map $g\colon B\longrightarrow SbU$ defined, for $b\in B$, by

$$g(b) = \{ x \in U : x \le b \}.$$

Since ${\mathfrak B}$ is a complete atomic BA, g is a Boolean isomorphism of ${\mathfrak B}$ onto ${\mathfrak B}_{S(L)}$. It remains to show that

$$(1) \qquad g(\kappa_{P}^{\mathfrak{B}}x)=\kappa_{P}^{\mathfrak{B}_{\mathbf{S}}}(gx) \ \text{ for all } x{\in}B \ \text{ and } \ P\subseteq\Omega.$$

Since each κ_P and g are completely additive and $\mathfrak B$ is atomic, it suffices to verify (1) for $x\in At\mathfrak B$. First, we consider the case where $P=\{a\}$ is an atom of $\mathfrak Sb\Omega$. We claim that

$$(2) \qquad g(\kappa^{\mathfrak{B}}_{\left\{a\right\}}x) = \kappa^{\mathfrak{B}_{\mathbf{S}}}_{\left\{a\right\}}(gx) \ \text{ for all } x \in \mathsf{At}\mathfrak{B}.$$

Let $x,y \in At\mathfrak{B}$. Then

$$y \in g(\kappa_{\{a\}}^{\mathfrak{B}}x) \qquad \Leftrightarrow y \leq \kappa_{\{a\}}^{\mathfrak{B}}x \\ \Leftrightarrow yT_{\{a\}}x \text{ (by Def. 5)}$$

is finitely inseparable, by 15.16 of Monk [5], it suffices to find formulas θv_0 , $\bar{R}v_0v_1$, and $\bar{S}v_0v_1$ in the language of T such that

(M₀) for every finite model $\mathfrak{A}=\langle X,R,S\rangle$ of Eq there is a finite model \mathfrak{B} of T such that $\langle \theta^{\mathfrak{B}},\bar{R}^{\mathfrak{B}},\bar{S}^{\mathfrak{B}}\rangle \cong \mathfrak{A}$.

This procedure will be used in the proof of 16(iii) below.

Theorem 16. (i) The theory of KA_{Ω} is decidable if $|\Omega| \le 1$.

- (ii) If $P \subseteq \Omega$ and $P \neq \emptyset$, the theory of $\mathfrak{Ro}_P(\mathrm{KA}_\Omega) = \{ \mathfrak{Ro}_P \mathfrak{B} : \mathfrak{B} \in \mathrm{KA}_\Omega \}$ is decidable.
- (iii) If $|\Omega| \geq 2,$ the theory of $KA_{\widehat{\Omega}}$ is finitely inseparable.
- PROOF. (i) There are two cases: $\Omega = \emptyset$ and $\Omega = \{p\}$. KA_{\emptyset} consist of complete atomic simple CA_1 's $\langle B, \kappa_{\emptyset} \rangle$. Since κ_{\emptyset} is definable in the theory of BA's, KA_{\emptyset} is equivalent to the theory of complete atomic BA's which is decidable. In the case $\Omega = \{p\}$, by 14(i), KA_{Ω} consist of algebras $\langle B, \kappa_{\emptyset}, \kappa_{\Omega} \rangle$ where κ_{\emptyset} is Boolean definable and $\langle B, \kappa_{\Omega} \rangle$ is a complete atomic CA_1 . In [1], Section 2, it is shown that the theory of complete atomic CA_1 's is the same as the theory of finite CA_1 's and that this theory is decidable.
- (ii) By 14(i) the theory of $\mathfrak{Ro}_{P}(KA_{\Omega})$ is the theory of complete atomic CA_{1} 's which was shown to be decidable in [1].
- (iii) Suppose $|\Omega| \ge 2$ and choose $r, s \in \Omega$ with $r \ne s$. The following formulas give a translation of Eq into the language of KA_{Ω} .

$$\begin{array}{ll} \theta v_0: & v_0 \;\; \text{is an atom} \\ & \bar{R} v_0 v_1: & \theta v_0 \; \wedge \; \theta v_1 \; \wedge \; \kappa_{\left\{r\right\}} v_0 = \kappa_{\left\{r\right\}} v_1 \\ & \bar{S} v_0 v_1: & \theta v_0 \; \wedge \; \theta v_1 \; \wedge \; \kappa_{\left\{s\right\}} v_0 = \kappa_{\left\{s\right\}} v_1 \end{array}$$

If $\mathfrak B$ is a KA_{Ω} , $6(\mathrm{i})$ shows that $<\mathrm{At}\mathfrak B,\bar{\mathrm R}^{\mathfrak B},\bar{\mathrm S}^{\mathfrak B}>$ is a model of Eq. To verify property (M_0) suppose $\mathfrak A=< X,R,S>$ is a (finite) model of Eq. Construct a Knowledge approximation atom structure $< X,T_P>_{P\subseteq\Omega}$ in the following way: let

$$\begin{split} T_{\left\{r\right\}} &= R, \quad T_{\left\{s\right\}} = S, \quad T_{\emptyset} = X^2, \quad T_{\left\{i\right\}} = X^2 \text{ for all } i \in \Omega {\sim} \{r, s\} \\ \text{and } T_P &= \bigcap_{i \in P} T_{\left\{i\right\}} \quad \text{for } P \subseteq \Omega \text{ with } |P| \geq 2. \end{split}$$

Note that $T_P \cap T_Q = T_{P \cup Q}$ for all $P, Q \subseteq \Omega$.

Let S denote the information system constructed in Definition 9 from the

atom structure above and let $\mathfrak{B}=\mathfrak{B}_S$ denote the corresponding KA_Ω . Note that \mathfrak{B} is finite when \mathfrak{A} is finite and that $<\!At\mathfrak{B},\bar{R}^\mathfrak{B},\bar{S}^\mathfrak{B}\!>\ \underline{\cong}\ \mathfrak{A}$. Thus, property (M_0) holds for the translation given. The finite inseparability of the theory follows.

It follows from 16(iii) and 15.9 of Monk [5] that

COROLLARY 17. For finite $|\Omega| \ge 2$,

- (i) the theory of KA_{Ω} is undecidable, and
- (ii) the theory of all finite KAO's is undecidable.

Theorem 16(iii) and Corollary 17 can be strengthened by replacing the class KA_{Ω} by the class of reduced KA_{Ω} 's. The stronger result is obtained by interpreting the theory of two <u>disjoint</u> equivalence relations into the class of reduced KA_{Ω} 's using the same translation.

References

- [1] Comer, S.D., Finite inseparability of some theories of cylindrification algebras.

 J. Symbolic Logic 34(1969), 171-176.
- [2] Henkin, L., J. D. Monk, and A. Tarski, Cylindric Algebras, Part I, North-Holland Pub. Co., Amsterdam, 1971.
- [3] Jónsson, B. and Tarski, A., Boolean algebras with operators. Part I. Amer. J. Math. 73(1951), 891-939.
- [4] Lee, T.T., An algebraic theory of relational databases. The Bell System Technical Journal 62, no. 10, part 2 (December 1983), 3159-3204.
- [5] Monk, J. D., Mathematical Logic. Springer-Verlag, New York, 1976.
- [6] Pawlak, Z., Information system theoretical foundations, Inform. Systems, 6(1981), 205-218.
- [7] Pawlak, Z., Rough sets and decision tables, Computation Theory, Lecture Notes in Computer Science, no. 208, edited by A. Skowron, Springer-Verlag, New York, 1985, 187-196.
- [8] Pawlak, Z., Knowledge, reasoning and classification: a rough set perspective. EATCS Bulletin, No. 38(June 1989), 199-210.
- [9] Pudák, P. and J. Tuma, Every finite lattice can be embedded in the lattice of all equivalences over a finite set, Commentationes Math. Univ. Carolinae 18(1977), 409-414.
- [10] Ras, Z. W. and Zemankova, M., Learning concept descriptions in a growing language. Fundamenta Informaticae XII(1989), 79-96.