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Abstract. This paper is based on the notion of an information system
<UQ,V.f> in the sense of Pawlak. Every set of knowledge P C
determines a closure operator on U. The class of Boolean algebras with
added operations determined by all sets of knowledge are axiomatixed. As
a consequence of the representation theorem information systems can be

constructed that have a prescribed lattice of functional dependencies.

1. Introduction

This paper deals with the notion of an information system S = <UQ,V,f>
in the sense of Pawlak [6]. These information systems have been studied under
various names: databases, knowledge representation systems, decision tables, and
learning systems ([4], [7], [8], [10]). In the approach taken by Pawlak, a subset P of
Q is called a set of knowledge and determines an approximation space <U,0 P> and

a closure operator P on U. In the methodology of rough concepts, PX denotes the

P—upper approximation of a concept X € U. The closure algebras <&bU, P>, where
&bU is the Boolean algebra of all subsets of U, can be characterized as complete
atomic cylindric algebras of dimension 1 (Proposition 14).

Often one is interested in relationships between various sets of knowledge. An
algebraic framework for studying this situation is developed in this paper. Every
information system S  determines a Boolean algebra with unary operators

<Gb U’p>PCQ which is called a knowledge approzimation algebra of type Q0 derived
from S. We propose a (non—elementary) set of axioms for the class of all such
algebras of a fixed type and show that the axioms have the intended models
(Theorem 11). Finally, in Section 4 it is shown that the first~order theory of
knowledge approximation algebras of type €, as well as the theory of its finite
models, is undecidable whenever |Q] > 2.

Throughout the paper we assume that 2 is a finite set. We use [2] as our basic
reference for notation; in particular, SbX denotes the collection of all subsets of X
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and &bX denotes the Boolean algebra with universe Sb.X.

2. Basic Definitions and Elementary Properties

An information system is a 4—tuple S = <X,Q,V,f> where X is a set, Q is
a finite set, V is a function with DomV = Q and fX — HaeQVa‘ For each
P C 0, define a relation 0P for z,ye X by

z0Py = VaeP (f:z:)az (ﬁ/)a.

Clearly 0P is an equivalence relation on X. The pair (X, HP) is called an
approzimation space for knowledge P and the €P~«classes, i.e., the subsets O_Pz =
{y: x0py } are called P—elementary categories or concepts indiscernible according to
knowledge P. A set A C X is definable in knowledge P if A is a union of 0P~c1asses,

ie, A= U {0pz:zed }.
Associated with an approximation space (X, OP) there is a closure operator P
and an interior operator P on X. Define P: SbX-— SbX and P: SbX — SbX by
P(4) = U {0pz:2ed} for ACX and
P(A) = | J{0pr: 0prc A} for dcx
Pawlak ([7],[8]) calls P(4) the P—upper approzimation of A and P(A) the P—lower
approzimation of A. Note that the subsets of X that are definable in P are the fixed
points of P (or the P—closed subsets).

The structure Bg = <SbX,U,n~,0, X, P >peq (or <GbX,P > peq for short)
is called the knowledge approzimation algebra of type Q derived from the information

system S. The reduct RopBg = <SbX,un~8,.XP > is called the (upper)
approzimation closure algebra of P.

The next definition presents axioms for an abstract knowledge approximation

algebra of type 2. The idea is to abstract the properties of the closure operator P as
an operator K pr

DEFINITION. A structure B = < ‘ﬂ”P>PCQ is a knowledge approzimation algebra of
type @ (recall that Q is finite) if kp € B? for each P C Q and the following
axioms hold for all z,9¢ B and P,Q C :

(Ao) B= <B,+,-,0,1> is a complete atomic Boolean algebra,
(Al) K/PO = 0)
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(A2) Kpr2s
(As)  kplzkpy) = &pt- K pl,
(Ag) z#0 implies kyz =1,
(As) Kpygt = (/«:Pr)-(nQ:v) if z is an atom of &

2B is called reduced if Kt = ¢ for all 26B. We denote the class of all
knowledge approximation algebras of type O by KAQ and refer to a member of this
class as a KAQ.

Observe that if B = <Bkp>pr is a KAy, then axioms (Ap)—(As) show
that <ﬂnp> is a CA; for each PC 0, i.e., each kp is a cylindrification in the

sense of [2]. The dual operation ng associated with a cylindrification %p (cf, 141

of [2]) is defined by /sf;c = —np(~z) for all zeB.

ProposiTION 1. If S = <X,Q,V,f > is an information system, the knowledge
approximation algebra 9B S of type Q derived from S isa KAQ. In particular, every

reduct R0 pB ¢ = <SbX,un~0,X, P> isa CAy

Proor. Clearly (Ag),(A1), and (A2) hold.
(A3) P(AnPB) = PANPB for A,BC X.

Suppose ¢ € PANPB. Then 0pnA # 9 and 0pNB # ¢. Since PB is a union
of §p—classes and z€ PB, Opz C PB. Thus, AnPBQOPz = Anfpx 0. Hence z¢€
Opz C P(ANPB); so the inclusion 2 holds. Now, suppose z € P(ANPB). Then
ANPBNOpz# 0; so ANOpz # @ (therefore z€ PA) and PBN0pz#® (which implies
TE 0Pm§ PB because PB is a union of 0P—classes). Hence the inclusion ¢ holds.
(A 0#ACX = PA=X

If ze4 and yeX, then z%y holds vacuously. So #{z} = X and (A4) follows.

(As) PUQ{z} = P{z}nQ{z} forall z€X.

If either P or Q is empty, the result follows from (A4). Assume P,Q # §.
Suppose y€ P{z}nQ{z}. Then sfpy and :c0Qy. So, if ace gPUQ’ then (f), =
(ﬁy)a because either a€P or ae(Q). Therefore, MPUQy’ ie., y € PUQ{z}. Thus, the

inclusion 2 holds. Now suppose that y € PU@Q{z} so zﬂquy. Since (fz), = (¥),
for all a € PUQ, fr and fy agree on all values in P and on all values in Q. Thus
zﬂpy and z0Qy. Hence the inclusion C holds.
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Note that the algebra %S derived from an information system S =
<X,Q,V,f> isreduced if and only if f is one—one.

COROLLARY 2. The dual of P in B¢ is P, ie, mgz P when kp=P.

Proor. Since ngz = —kp(~—) it suffices to show —P(~4) = PA for A C X. This
follows since both —P(—A4) and PA are unions of 0 p—classes and Opz C A iff
Open—A =0 iff 0pzC—P(—A).

The result below summarizes properties from Sections 1.2 and 1.4 of [2] which
hold because <B,K,P> is a CAqfor each P C Q. Thus, the properties follow from
axioms (Ag)—(As) only. It is well known that these properties hold for clogure

operators P and P associated with approximation spaces (I71, [8D).

ProrosiTion 3. (i) mgxg o< Kpt.
(i) £J0=rp =0 and k01 =kpl=1.
(i) z<y == kpe < kpy and /s}‘zccg ngy.
(iv) fp(zty) = kpt+ kpy and ng(zy) = (ngz)(ngy)
(v) 1If Y.z exist, then Y.k pzi exist and % pl(%;21) = Lk pai.
(vi) Kiph pT = ngnpz= £ pg.
(vii) ngngx =K Pngx = nf,z.
(viii) If Iikpzi exist, then KP(Hi/chi) = Lkp2 ; in particular, % pl(k po- Kpy) =
K pT £ pY.
The following lemma describes natural relationships between approximation
operators which will be used in Section 3.

Lemma 4. (i) K pT & an for all 2¢B whenever QC P Q.
(ily =z< Kpy = Kpr< kpy.

Proor. (i) By additivity 3(v), it suffices to consider z e AtB and @ C P. Then, by
(A5)7

KpT = Kpyof = (an)-(an) < kgt
(i) follows from 3(iii) and 3(vi).
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3. Representation

The goal of this section is to show that every KAQ can be obtained from an
information system, i.e., axioms (Ao)—(As) have the intended models. We then
examine the relationship.between approximation closure algebras and CAy’s.

The first step is to understand the structure of the class of approximation
operators of a KAq, that is, we want to characterize the class { kp: PCQ } of
closure operators of a KA, 9. By additivity 3(v) and the fact B is complete and
atomic, each Kp is determined by its values on At®3. Thus Kp may be viewed as a

AtB

member of B More precisely, let Fp= /sPI A9, the restriction of Kp t0 the

AtB

atoms. By (Aj), {kp: PCQ} isa meet—subsemilattice of <B™"7,A> where A

At

is defined pointwisein B, ie., (fAg)(z) = fr-gz for 2cAtD,. In fact, (As) shows

that the map that sends P »~— Ep is a semilattice morphism <&bQ,U> —

<BAt% AtB

we use an isomorphic subsemilattice of the partition lattice II(At%) whose elements

,A>. Instead of using the meet—subsemilattice of <B ,A> given above,

consist of the partitions that are kernels of the Kp's.

DeriniTioN 5. For a KAQ B = <B’“P>PCQ the partition semilattice of B, denoted
by Lgg, is the structure <{TP: PCQ },n,U2> where U= AtB and, for P C Q,
a,be U

aTPb == Kpa= “Pb

(or equivalently, aTph &= ag me).

LeuMa 6. (1) Tp is an equivalence relation on U for all PC Q.
(i) T,= 0"

(i) TpNT = Tpyo forall P,QCQ.

(@iv) Ly is a meet—subsemilattice of II(U).

(v) Themap P+~ Tp is a morphism of <SbQ,U,¢> onto Leg-

Proow. (i) obvious and (ii) follows from (A4). Parts (iv) and (v) are immediate from
(i) — (iid).
(iii). Suppose (a,b) € TPﬂTQ. Then kpa=kph and KQo = ﬂQb. By (Aj),

F"PUQG = mPa-nQa = nPb-me = ﬁPqu
since a,b € At®B. Therefore, the inclusion ¢ holds. Now, suppose Kpy Qa = ”PUQb'
Then &< NPUQb = ﬁPUQag Kpl S0 npb < kpa by 4(ii). Similarly K pt € nPb 50

kpe = kpb and (a,b) € Tp. Likewise (a,b)e€ TQ; so the inclusion 2 holds.
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® o= Hap
& (f1), = vap = (fy), where b= Tty (by Def. 9)
@ Vel = () = K gl

Hence, (2) holds. Now, for z € At® and P# ¢, (1) follows from (2) and (As):

grpz) = g(IlP/s{a}z) = I;‘!Pg(ﬂ{a}x) = I;!Pn{a}(gx) = £ p(g2).

Observe that, by (A4), (1) obviously holds if P = §. Hence, gis an isomorphism of
B onto %S( L) as required.

The next few observations deal with consequences of Theorem 11,

REMARK 12. Theorem 11 shows that axioms (Ag)—(As) completely characterize the
class of knowledge approximation algebras derived from information systems.
Axioms (A;)—(Aj) are equations while (A4) and (A;) are not. The lemma below
shows the class of all KAQ’s is not equational.

LeMyA 13. Every member of S(KA() is a simple (universal) algebra.

Proor. It suffices to show, from axioms (Ao)—(A4), that any congruence relation on a
KAQ B that is not the identity relation is the universal relation. If 4 is a
congruence on B and ¢ # Id, then ¢ is a Boolean congruence; so there exist an atom
2€B, 260. Then 1= (/i@z)é’(%o) =0 by (As). Hence, fis the universal congruence.

As noted in Proposition 1 every approximation closure algebra <GbHU, P>
associated with an information system is a complete atomic CA 1. Below we see that
every complete atomic CA has such a representation.

ProrosiTion 14. Let Py C Q with Py# ¢. Then
6y Every complete atomic CA; is isomorphic to an approximation closure algebra

EJ%P Bg= <&bU,Py> for some information system S.
(ii) Every CA, is embeddable in an approximation closure algebra $Ro 2, Bg for
some S.

Proor. (i) Given a complete atomic CA; % = <4 ,Co> we define a system B =
<B ”P>PCQ by letting the Boolean algebra B = A4, »Kp=c¢o forall P#§,and, for
all ze4, kgt =1 if 240 and equal 0 otherwise. It is clear that Bis a KAQ 50, by
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Theorem 11, B & ‘BS for some information system S. Thus, A = EﬁDPO‘B o %DPO‘BS
as desired.

(it) follows from (i) by the fact that every CA;is embeddable in a complete atomic
one (cf., 2.7.20 of [2]).

The final result of this section uses Proposition 8 and Theorem 11 to create an
information system with a prescribed relation of functional dependencies.

THEOREM 15. Every finite lattice is isomorphic to the partition semilattice of some
KAQ. Moreover, this algebra may be chosen as the algebra derived from the
information system S(L’) where L’ is a representation of the lattice as a meet
semilattice of partitions.

Proor. Given a finite lattice L  first observe that L is isomorphic to a

meet—semilattice L’ of partitions. This is immediate from the Pudlik and Tma
solution [9] of Whitman’s problem; however, we provide a simple direct construction.
For zeL let h(z) be the equivalence relation on L defined for a,bel by

ab{z)b & a=0bor gb<z

Then h: L — II(L) is a meet—semilattice isomorphism of L onto L’ = { h(z) :

2€L } CII(L). Now,let @ =L and,for PCQ,set T, = ﬂ h(z). Note that Tp
zeP

= h(AP) since h is a meet—isomorphism of L onto L’. Then L’ = { Tp: PCQ}
and <L',n,L2> is a partition semilattice. Since the map that sends P C O to
R(AP) is a semilattice morphism from <SiQ,U,6> onto L’ it follows from
Proposition 8 that L’ is isomorphic to the partition semilattice of some KAQ B.
By applying Theorem 11 to B with L’ as its partition semilattice we see that the
information system S(L‘) has the property that B v %S(L’)‘

4. Decision Problems

The goal of this section is to settle the decision problems for the first—order
theory of KAQ for every finite Q. The answers are closely related to the ones
obtained for cylindrification algebras in [1] but the details differ. We will use certain
basic facts about finitely inseparable theories which can be found in either [1] or
Monk [5] (results 15.7, 15.16, and 16.56).

Let Eq denote the theory of two equivalence relations, i.e., the models of Eq
are relational structures <X RS> where R and S are equivalence relations on X.
The theory Eq is finitely inseparable by 16.56 of Monk [5]. To show that a theory T
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ReMark 7. (i) Lgy is actually a lattice, but not necessarily a sublattice of TI(U). The
join @ is defined by

TPeaTQz n{ Tp:RCQ and TRQ Tp and Tp2 TQ}'

In Lee [4] the lattice Leg is called the relation lattice of S when 9 is the knowledge

approximation algebra induced by an information system (database) S. The ordering
relation of this lattice expresses the functional dependencies that are valid in S.

(i)  We say that a collection of equivalence relations L = <{Tp:PCQ}N, 2>
is a partition semilattice if properties 6(i), 6(ii), and 6(iii) hold. Of course, Lemma 6
shows that L% is a partition semilattice.

(ili) The collection of relations that form a partition semilattice L is closely related
to the notion of a cylindric atom structure (cf., 2.7.40 of [2]). We say that a
relational system <U, TP>PCQ is a knowledge approzimation atom structure if for
all P,QcQ

(1) Tp is an equivalence relation on U,
(2)  Ty= 0% and
) TpATy=Tpy,

We will use partition semilattices and atom structures interchangeably. The next
result characterizes the partition semilattices obtained from KAQs.

ProposiTioN 8. A meet—subsemilattice of (o), <L,n,U2>, is a partition semilattice
of some B in KAQ if and only if there is a semilattice morphism of <SH0,U,0> onto
L.

ProoF. The = direction follows from 6(v). For =, suppose L = { Fp:PCQ}

*
For each equivalence relation Fp define Fp:SbU— SbU by

F;X: U {yeU:zFpy}.
TeX P

*
Then 9B’/ = <6[JU,FP>PgQ is a KAg. Clearly, At®’ = {{z} : €U }. Using the
natural correspondence between the atoms of B’ and the elements of I/ we obtain a
knowledge approximation algebra 9 isomorphic to B’ such that At® = U and
L% is L.

Another way to state Proposition 8 is to say that a meet—subsemilattice of
II( U) is a partition semilattice of a KAQ if and only if its elements are the relations
of a knowledge approximation atom structure.
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We now construct an information system from a partition semilattice.
DEFINITION 9. Suppose L = <{TP cPCQ },n,U2> is a partition subsemilattice of
I(U) and © is finite. The structure

S(L) = <URQ,V,f>,

called the information system of L, is defined in the following way. Choose a function
V on Q such that | Vaf equals the cardinality of the set of T a —blocks for all
a€Q). We denote the elements of V by vab where b€ U/T{a} (ie, b= T{a}z

for some z£U). Now, define fU— HaeQ vV, by
j(x)a = Va,b

for all zeU, a€fl, and b= T{a}x. Of course, Va may be infinite if U is infinite.
It is obvious that
LemMA 10. S(L) is an information system.

THEOREM 11. If B = <B”$P>PCQ is a KA& where Q is finite, L = L% is the
partition semilattice of %, and § = S(I) is the information system of L, then B v
B S(Ly the knowledge approximation algebra of S(L).

Proor. Suppose L = <{Tp: P C Q },0,U°> where U= AB and S(I) =
<UQ,V,f> is given in Definition 9. Consider the map ¢ B - SbU defined, for
be B, by

g0y ={2cU:2<b}.

Since 9 is a complete atomic BA, g is a Boolean isomorphism of 28 onto %S(L)‘ It
remains to show that

(1) g(m?x) = n%s(gz) for all z¢B and P C Q.

Since each Kp and g are completely additive and B is atomic, it suffices to verify (1)
for zeAt®. First, we consider the case where P = {a} is an atom of &b}, We
claim that
(2) g(n?a}z) = ﬂ?z}(g(l}) for all z€ AtB.
Let z,y € At®B. Then
B B
yEg(/c{a}z) @yﬂn{a}z
) yT{a}z (by Def. 5)
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is finitely inseparable, by 15.16 of Monk [5], it suffices to find formulas fvy, Rvgvy,

and Svov; in the language of T such that

(M) for every finite model % = <X,R,S> of Eq there is a finite model B of T
such that <0%,R%,§%> v QL

This procedure will be used in the proof of 16(iii} below.

THEOREM 16. (i) The theory of KA, is decidableif Q] < 1.

(i) I PCQ and P# 0, the theory of RopKAQ) = { T8 : B e KA } is
decidable.

(i) If |Q] > 2, the theory of KAg is finitely inseparable.

Proor. (i) There are two cases: Q = ¢ and Q = {p}. KAy consist of complete
atomic simple CA’s <B,n®>. Since kg is definable in the theory of BA’s, KA@ is
equivalent to the theory of complete atomic BA’s which is decidable. In the case
= {p}, by 14(i), KAQ consist of algebras <B,/s®,/~zﬂ> where kg is Boolean
definable and <B,kn> is a complete atomic CA. In [1], Section 2, it is shown that
the theory of complete atomic CA s is the same as the theory of finite CA’s and that
this theory is decidable.

(ii) By 14(i) the theory of Rop(KAQ) is the theory of complete atomic CA s which
was shown to be decidable in [1].

(iii) Suppose |Q] > 2 and choose 7,5 € Q@ with r# s. The following formulas give a
translation of Eq into the language of KAQ.

Ovy: vy is an atom
RVOV1Z 0V0 A 0V1 A K{T}Vo = K{T}Vi
Svovy: Ovo A Ovi A RV = N{S}V1

If B is a KA, 6(i) shows that <At‘B,R93,§%> is a model of Eq. To verify
property (M,) suppose A = <X,R,S> is a (finite) model of Eq. Construct a
Knowledge approximation atom structure <X, Tp> pcg in the following way: let

T{r} = R, T{S} = S, T@ = XZ’ T{Z} = X2 forall j¢ QN{T’,S}
and Tp=| | Trq for PCQ with |P| 2.
icp 14

Note that TPOTQ: TPUQ forall P,QC Q.

Let § denote the information system constructed in Definition 9 from the
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atom structure above and let B = By denote the corresponding KA. Note that

B is finite when 2 is finite and that <At%,R%,§%> v 2. Thus, property (M)

holds for the translation given. The finite inseparability of the theory follows.
It follows from 16(iit} and 15.9 of Monk [5] that

CoroLrary 17. For finite |Q] > 2,
1) the theory of KA, is undecidable, and
(ii)  the theory of all finite KAq's is undecidable.

Theorem 16(iii) and Corollary 17 can be strengthened by replacing the class
KAQ by the class of reduced KAQ’s. The stronger result is obtained by interpreting
the theory of two disjoint equivalence relations into the class of reduced KAQ’s using
the same translation.
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