LATTICES OF CONJUGACY RELATIONS

Stephen D. Comer¹ The Citadel, Charleston SC 29409, U.S.A.

This paper describes a few elementary properties of the lattice of conjugacy relations of a group. A decomposition of a group into double cosets as well as its decomposition into ordinary conjugacy classes give examples of conjugacy relations. The notion was first defined in the case of groups in Marty [8] to provide examples of hypergroups. An equivalence relation always gives rise to a "quotient" structure. In the case of a conjugacy relation this "quotient" will not necessarily be a group, but a system that we call a polygroup. A polygroup is a special kind of hypergroup in the sense of Marty [8] or multigroup in the sense of Dresher and Ore [7]. Because an isomorphism theorem (Theorem 4.7) allows us to relate an interval $[\theta,1]$ in the conjugacy lattice of a group G with the conjugacy lattice of the polygroup "quotient" properties for conjugacy relations are developed in the context of a polygroup.

In this paper we will mainly consider conjugacies derivable from subsystems of polygroups and techniques for creating other conjugacies from these. A lot of information about a group is coded into its conjugacy lattice. It is conjuctured that the conjugacy lattice Conj(G) of a finite group G determines the group. To obtain some evidence for this conjecture it is shown that

¹Research supported in part by a grant from The Citadel Development Foundation. This paper is in final form and no version of it will be submitted for publication elsewhere.

¹⁹⁹¹ MR Subject Classification. Primary 06B99, 20N20; Secondary 06A23

for a finite abelian group G, Conj(G) determines the subgroup lattice of G.

1. Polygroups

In this paper the same symbol is used to denote a function and its obvious extension to sets, eg., we use the symbol f to denote both a function $f: M^k \longrightarrow Sb(M)$ and its natural extension $Sb(M)^k \longrightarrow Sb(M)$ defined by

$$\begin{array}{c} f(X_0,...,X_{k-1}) = \cup \{f(x_0,...x_{k-1}) : x_i \in X_i \ \text{for all} \ i < k \ \} \\ \text{for} \ X_0,...,X_{k-1} \subseteq M. \end{array}$$

A polygroup is a system $\langle M, \cdot, ^{-1}, e \rangle$ where $e \in M$, $^{-1}$ is a unary operation on M, \cdot assigns a nonempty subset of M to each element of M×M, and the following axioms hold for all $x,y,z \in M$:

- $(P_1) \quad e \cdot x = \{x\} = x \cdot e,$
- (P₂) $x \in y \cdot z$ implies $y \in x \cdot z^{-1}$ and $z \in y^{-1} \cdot x$,
- $(P_3) \quad (x \cdot y) \cdot z = x \cdot (y \cdot z).$

Note that in (P_3) the extension of \cdot to subsets of M is used. To make reading easier we also identify a singleton subset with its unique element. The product $x \cdot y$ will frequently be denoted by juxtaposition xy.

A polygroup, as defined above, is a system of type $\langle 2,1,0\rangle$. As with groups, the notion could be defined as a system of type $\langle 2,0\rangle$. A polygroup is a special case of the notion of hypergroup introduced by Marty [8] and of multigroup due to Dresher and Ore [7].

For a subgroup H of a group G the collection G//H of all double cosets of H forms a polygroup with the natural operations (cf., [7]). A polygroup made from all conjugacy classes of a group G was defined in [8] and discussed in Campaigne [1] and Dietzman

[6]. A dual equivalence between the category of polygroups and the category of complete atomic integral relation algebras is established in Comer [2] where other examples of polygroups are given.

The two examples of polygroups given above are formed from equivalence classes on a group. The first collected double cosets together into an algebraic system and the second collected conjugacy classes together. The notion of a general conjugacy relation, given below, abstracts properties of these two equivalence relations. The notion was first defined, in the case of groups, by Marty [8] who called the relations conjugations. This terminology was used by in [1] and [2].

Definition 1.1. Suppose $\langle M, \cdot, ^{-1}, e \rangle$ is a polygroup. Then

- (i) A conjugacy relation on M is an equivalence relation on M such that for all $x,y,z,z' \in M$:
 - (1) $z' \theta z \in x \cdot y$ implies $\exists x', y' (x' \theta x, y' \theta y, and z' \in x' \cdot y')$
 - (2) $x\theta y$ implies $x^{-1}\theta y^{-1}$.
- (ii) A conjugacy θ on M is a special conjugacy if, for all $x \in M$, $x\theta e$ implies x = e.

Using the notation $\theta x = \{y: y\theta x \}$, a conjugacy relation on M can be described, alternatively, as an equivalence relation θ such that for all $x,y\in M$:

- (1') $\theta(xy) \subseteq (\theta x)(\theta y)$ and
- (2') $(\theta x)^{-1} = \theta(x^{-1}).$

A conjugacy is special if $\theta e = \{e\}$.

We say that N is a *subpolygroup* of a polygroup $\langle M, \cdot, ^{-1}, e \rangle$ if $N \subseteq M$, $e \in \mathbb{N}$, and for all $x, y \in \mathbb{N}$ $x^{-1} \in \mathbb{N}$ and $x \cdot y \subseteq \mathbb{N}$.

Example 1.2. (i) For a subpolygroup H of M define a relation $\theta_{\rm H}$ for x,y \in M by

$$x\theta_H y$$
 iff $HxH = HyH$.

(ii) If H is a subgroup of Aut(M), define a relation θ^{H} for $x,y\in M$ by

$$x\theta^{H}y$$
 iff $\sigma(x) = y$ for some $\sigma \in H$.

The relation θ_H is a conjugacy and the relation θ^H is a special conjugacy on M.

A quotient polygroup can be associated with a conjugacy relation θ on a polygroup M. On the set $\theta M = \{ \theta x : x \in M \}$ of all θ —blocks of an equivalence relation θ on M operations are defined, for $x,y \in M$, by

(3)
$$(\theta x)^*(\theta y) = \{\theta z : \theta z \subseteq (\theta x)(\theta y)\}$$
 and

(4)
$$(\theta x)^{-1} = \theta(x^{-1}).$$

The system $<\theta M,*,^{-1},\theta >$, denoted by $M//\theta$, is a polygroup whenever θ is a conjugacy relation. In fact, Proposition 2.1 of [2] shows that the system $M//\theta$, obtained from M using the "induced" operations in (3) and (4), is a polygroup if and only if θ is a conjugacy relation.

A reader should be aware that there are two common ways for an operation \cdot to induce an operation on θ M (and make a quotient). One is given in (3) and the other is defined by

(5)
$$(\theta \mathbf{x}) \circ (\theta \mathbf{y}) = \{ \theta \mathbf{z} : \theta \mathbf{z} \cap (\theta \mathbf{x}) (\theta \mathbf{z}) \neq \emptyset \}$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbf{M}$.

The operation defined in (5) is the one normally used to define a quotient structure M/θ of a multivalued algebra, cf., Schweigert [9] or Corsini [5], Theorem 8. It leads to the notion of a congruence relation on a multivalued algebra. In 3.2 below it is shown that a congruence relation on a polygroup is a conjugacy relation associated with a normal subpolygroup. Of course, there are many other conjugacies.

2. The Conjugacy Lattice

For a polygroup M let $\operatorname{Conj}(M)$ denote the collection of all conjugacy relations on M and let $\operatorname{Conj}_s(M)$ denote the collection of all special conjugacies. The smallest conjugacy relation is the identity relation, denoted by δ_M , and the largest conjugacy relation is M^2 which is denoted by $\mathbb{1}_M$. Let $\mathbb{1}_M^s$ denote the special conjugacy relation which identifies all elements of M different from the identity e. When the polygroup M is understood δ , $\mathbb{1}$, and $\mathbb{1}_M^s$ will be written instead of δ_M , $\mathbb{1}_M$, and $\mathbb{1}_M^s$.

PROPOSITION 2.1. If M is a polygroup, then

- (i) Conj(M) forms a complete lattice whose join is the same as the join in the lattice of all equivalence relations on M,
- (ii) $\operatorname{Conj}_{\mathbf{S}}(M)$ is the principal ideal in $\operatorname{Conj}(M)$ determined by $\mathbb{1}^{\mathbf{S}}$.
- Proof. (i). It suffices to show, for every nonempty set S of Conj(M), that the join ΣS of S (in the lattice of all equivalence relations on M) is again a conjugacy. Suppose $\mathbf{z}'(\Sigma S)\mathbf{z}\in\mathbf{x}\cdot\mathbf{y}$. Then $\mathbf{z}^{\theta}0^{\mathbf{z}}1^{\theta}1^{\mathbf{z}}2^{\dots\theta}\mathbf{n}-1^{\mathbf{z}}\mathbf{n}=\mathbf{z}'$ for some $\mathbf{z}_1,\dots,\mathbf{z}_{n-1}\in M$ and $\theta_0,\dots,\theta_{n-1}\in S$. Because $\theta_0\in \mathrm{Conj}(M)$, $\mathbf{z}_1\in\mathbf{x}_1\cdot\mathbf{y}_1$ for some $\mathbf{x}_1\theta_0\mathbf{x}$ and $\mathbf{y}_1\theta_0\mathbf{y}$ by 1.1(i)(1). Repeat for $\theta_1,\dots,\theta_{n-1}$ to obtain $\mathbf{x}_1,\dots,\mathbf{x}_n$ and $\mathbf{y}_1,\dots,\mathbf{y}_n$ such that $\mathbf{x}^{\theta}0^{\mathbf{x}}1^{\theta}1^{\dots}\theta_{n-1}\mathbf{x}_n$, $\mathbf{y}^{\theta}0^{\mathbf{y}}1^{\theta}1^{\dots}\theta_{n-1}\mathbf{y}_n$ and $\mathbf{z}_i\in\mathbf{x}_i\cdot\mathbf{y}_i$ for all $i\leq\mathbf{n}$. Hence $\mathbf{x}_n(\Sigma S)\mathbf{x}$, $\mathbf{y}_n(\Sigma S)\mathbf{y}$, and $\mathbf{z}'\in\mathbf{x}_n\cdot\mathbf{y}_n$; so condition (1) of 1.1(i) holds for ΣS . The verification of condition (2) in 1.1(i) is routine.
- (ii) is obvious since $\theta \in \text{Conj}(M)$ is special if and only if $\theta \leq 1^S$.
- REMARK 2.2. (i) There are situations when it is desirable to regard a conjugacy on M as a partition of M instead of an equivalence relation. Partitions and equivalence relations will be interchanged freely. Partitions will be written in the form $\{\underline{A};\underline{B};...\}$ where A,

B, ... are the blocks of the partition, eg., $\{0;1,2;3,4,5\}$ is the partition with blocks $\{0\}$, $\{1,2\}$, and $\{3,4,5\}$. The largest special conjugacy relation $\mathbb{1}_{\mathbf{M}}^{\mathbf{S}}$ denotes the partition $\{\underline{e};\underline{\mathbf{M}}\setminus\{\underline{e}\}\}$.

(ii) The join and meet in Conj(M) (and Conj_S(M)) are denoted by V and Λ , respectively. Neither Conj(M) nor Conj_S(M) is a sublattice of the partition lattice, in general, because the intersection of two conjugacy relations is not necessarily a conjugacy. We give an example involving conjugacies on S₃. (The complete lattice Conj(S₃) is given in Fig. 1). Let S₃ = $\{0,1,2,3,\alpha,\beta\}$ where the elements denote the identity permutation, (2,3), (1,3), (1,2), (1,2,3), and (1,3,2) respectively. Then $\theta = \{\underline{0};\underline{2};\underline{\alpha},\underline{\beta},\underline{1},\underline{3}\}$ and $\varphi = \{\underline{0};\underline{3};\underline{\alpha},\underline{\beta},\underline{1},\underline{2}\}$ are special conjugacy relations on S₃ (by the comment proceeding 4.4 below), but $\theta \cap \varphi = \{\underline{0};\underline{2};\underline{3};\underline{\alpha},\underline{\beta},\underline{1}\}$ is not a conjugacy because $1(\theta \cap \varphi)\alpha = 3 \cdot 2$ and $1 \neq 3 \cdot 2$. The lemma below and the fact that S₃ is generated by $\{2,3\}$ shows that, for θ and φ above, $\theta \wedge \varphi = \delta$ (= the identity conjugacy relation).

LEMMA 2.3. If G is a group and $\theta \in \text{Conj}_{S}(G)$, then $H = \{x \in G : |\theta x| = 1\}$ is a subgroup of G.

Proof. Clearly $e \in H$ and H is closed under inverses. If $x,y \in H$, then

$$\theta(xy) \subseteq (\theta x)(\theta y) \subseteq \{xy\}$$

so H is closed under products also. \Box

3. Conjugacy Relations Determined by Subsystems

In 1.2 a conjugacy relation, $\theta_{\rm H}$, was associated with a subpolygroup H of a polygroup M. It is shown in 3.2 that these conjugacies include all congruence relations. The definition of a congruence relation on a polygroup given below is a special case of

the definition used in [9] for general multialgebras.

Definition 3.1 An equivalence relation θ on a polygroup M is a congruence relation if for all $x,y,u,v\in M$

- (1) $x\theta y$, $u\theta v$ implies $(x \cdot u)\theta(y \cdot v)$, where for $A, B \subseteq M$, $A\theta B$ means that for every $a \in A$ there is a $b \in B$ such that $a\theta b$ and vice-versa.
- (2) $x\theta y \text{ implies } x^{-1}\theta y^{-1}.$

The lattice of all congruences on M is denoted by Con(M). A subpolygroup H of M is *normal* if xH = Hx for all $x \in M$ (cf., Dresher and Ore [7]).

The next result will help to decompose a conjugacy relation into a double coset relation $\theta_{\rm H}$ and a special conjugacy. It is a polygroup version of Theorem 5 in [3]. It also shows that congruence relations correspond to normal subpolygroups.

THEOREM 3.2. Suppose M is a polygroup.

- (i) If $\theta \in \text{Conj}(M)$ and $N = \theta e$, then N is a subpolygroup of M and $\theta_N \subseteq \theta$.
- (ii) For an equivalence relation θ on M, $\theta \in \text{Con}(M)$ if and only if $\theta = \theta_N$ for some normal subpolygroup N of M.

(ii) It is straightforward to show that $\theta_{\mathbf{N}} \in \mathrm{Con}(\mathbf{M})$ whenever N is a normal subpolygroup of M; so (\rightleftharpoons) holds. For (\Longrightarrow) , suppose $\theta \in \mathrm{Con}(\mathbf{M})$. To show $\theta \in \mathrm{Conj}(\mathbf{M})$ it suffices to verify (1) of 1.1(i) so we suppose $\mathbf{z}' \theta \mathbf{z} \in \mathbf{xy}$. Then $\mathbf{x} \in \mathbf{zy}^{-1} \theta \mathbf{z}' \mathbf{y}^{-1}$ by (\mathbf{P}_2) and $\theta \in \mathrm{Con}(\mathbf{M})$. It follows that there exist $\mathbf{x}' \theta \mathbf{x}$ with $\mathbf{x}' \in \mathbf{z}' \mathbf{y}^{-1}$, i.e., $\mathbf{z}' \in \mathbf{x}' \mathbf{y}$ using (\mathbf{P}_2) . Hence $\theta \in \mathrm{Conj}(\mathbf{M})$. Now, by 3.2(i) $\theta \supseteq \theta_{\mathbf{N}}$ where $\mathbf{N} = \theta \mathbf{e}$ is a subpolygroup of M. Suppose $\mathbf{x} \theta \mathbf{y}$. Then $\mathbf{e} \in \mathbf{x} \cdot \mathbf{x}^{-1} \theta \mathbf{y} \cdot \mathbf{x}^{-1}$ by 3.1(1), so there exist $\mathbf{z} \in \mathbf{N}$ with $\mathbf{z} \in \mathbf{y} \mathbf{x}^{-1}$. Thus, $\mathbf{y} \in \mathbf{z} \cdot \mathbf{x} \subseteq \mathbf{N} \mathbf{x}$ which gives $\mathbf{x} \theta_{\mathbf{N}} \mathbf{y}$. Hence, $\theta = \theta_{\mathbf{N}}$. It remains to show that N is normal. If $\mathbf{y} \in \mathbf{N} \mathbf{x}$, then $\mathbf{x} \theta \mathbf{y}$ which implies $\mathbf{e} \in \mathbf{x}^{-1} \mathbf{x} \theta \mathbf{x}^{-1} \mathbf{y}$ by 3.1(1). Thus, for some $\mathbf{z} \theta \mathbf{e}$, $\mathbf{z} \in \mathbf{x}^{-1} \mathbf{y}$ which gives $\mathbf{y} \in \mathbf{x} \mathbf{z} \subseteq \mathbf{x} \mathbf{N}$. Therefore $\mathbf{N} \mathbf{x} \subseteq \mathbf{x} \mathbf{N}$. The other inclusion is similar, so it follows that N is normal.

By 1.2(i) a conjugacy relation θ_N is associated with every subpolygroup N of M, not just the normal ones. The following summarizes a few properties of this embedding.

PROPOSITION 3.3. For a polygroup M,

- (i) The map $N \longmapsto \theta_N$ embedds the lattice of subpolygroups of M into $\operatorname{Conj}(M)$ as a poset, in fact as a join semilattice.
- (ii) The image of the map in (i) has only $\theta_{\{e\}} = \delta$ in common with $\operatorname{Conj}_{\mathbf{S}}(M)$. In particular, $\operatorname{Con}(M) \cap \operatorname{Conj}_{\mathbf{S}}(M) = \{\delta\}$.
- (iii) If G is a group, Con(G) is a sublattice of Conj(G).

Proof. (i) Suppose H and K are subpolygroups of M and <H,K> is the subpolygroup generated by H and K. It suffices to show that $\theta_H \lor \theta_K = \theta_{<H,K>}$. If H and K are comparable, say H \subseteq K, then <H,K> = K and $\theta_H \lor \theta_K = \theta_K = \theta_{<H,K>}$ clearly holds. Assume that H and K are not comparable. Then $(\theta_H \lor \theta_K)$ e \supset H and $(\theta_H \lor \theta_K)$ e \supset K so $(\theta_H \lor \theta_K)$ e \supset <H,K>. By 3.2(i), $\theta_H \lor \theta_K \geq \theta_{<H,K>}$. Since the other inclusion is clear, equality holds.

- (ii) If $\theta_{H} \in \text{Conj}_{S}(M)$, then $H = \{e\}$ by 3.2 and $\theta_{H} = \delta$.
- (iii) By a standard group theory argument $\theta_H \cap \theta_K = \theta_{H \cap K}$; so $\theta_H \cap \theta_K$ is a conjugacy relation which equals $\theta_H \wedge \theta_K$. \square

The embedding in 3.3 is not, in general, a lattice embedding. For example in S_3 (using the notation in 2.2(ii)), if $H = \{0,1\}$ and $K = \{0,\alpha,\beta\}$, then $H \cap K = \{0\}$ but $\theta_H \cap \theta_K = \{\underline{0};\underline{1};\underline{\alpha},\underline{\beta};\underline{2},\underline{3}\} \in Conj(S_3)$ which gives $\theta_H \wedge \theta_K \neq \delta = \theta_{H \cap K}$.

Certain extreme elements in $\operatorname{Conj}(M)$ can be described in terms of conjugacies related to subpolygroups. The dual atoms and the minimal non-special elements in $\operatorname{Conj}(M)$ are described below. If N is a subpolygroup of M, the partition $\{\underline{N};\underline{M}\setminus \underline{N}\}$ is a conjugacy relation on M which we denote by $\overline{\theta}_N$. For an arbitrary $\varphi \in \operatorname{Conj}(M)$ let $\overline{\varphi} = \overline{\theta}_N$ where $N = \varphi e$. Observe that $\overline{\varphi} = \mathbb{1}^S$ whenever φ is special.

Proposition 3.4. (i) The dual atoms in Conj(M) are exactly the conjugacy relations $\overline{\theta}_N$ where N is a proper subpolygroup of M.

- (ii) The minimal elements of the poset $\{\theta \in \operatorname{Conj}(M) : \theta \nleq 1^S\}$ are the elements θ_N where N is an atom in the subalgebra lattice of M.
- Proof. (i). Suppose θ is a dual atom of Conj(M). $N=\theta e$ is a proper subpolygroup of M, by 3.2(i) and $\theta \leq \overline{\theta}_N$. Since θ is a dual atom $\theta = \overline{\theta}_N$.
- (ii). If θ is not a special conjugacy relation, $N=\theta e\neq \{e\}$ and, by 3.2(i), $\theta_N \leq \theta$. If θ is minimal and not special, then $\theta_N=\theta$. \square

Corollary 3.5. (i) The number of dual atoms in $\operatorname{Conj}(M)$ is equal to the number of proper subpolygroups of M. In particular, $\mathbb{1}^S = \overline{\theta}_{\{e\}}$.

(ii) for a group G, 1 is V-irreducible in Conj(G) iff G is a simple abelian group.

4. Splitting Conjugacy Relations

In this section we describe techniques for investigating intervals in Conj(M) that lie above or below a given non—special conjugacy relation.

By 3.2(i) the block θ e of a conjugacy θ is a subpolygroup. A new conjugacy $\theta[\varphi]$ may be obtained from θ by replacing the θ e block by the blocks of a conjugacy $\varphi \in \text{Conj}(\theta e)$. More precisely,

DEFINITION 4.1. For $\theta \in \text{Conj}(M)$ and $\varphi \in \text{Conj}(\theta e)$, the φ -split of θ is an equivalence relation $\theta[\varphi]$ on M defined by

PROPOSITION 4.2. $\theta[\varphi] \in \text{Conj}(M)$. Moreover, $M//(\theta[\varphi])$ is isomorphic to $(\theta e//\varphi)[M//\theta]$, the polygroup extension of $\theta e//\varphi$ by $M//\theta$ introduced in [4].

Proof. To verify the first statement it suffices to show that the product of two $\theta[\varphi]$ —blocks is a union of $\theta[\varphi]$ —blocks. Along the way we develop a rule for computing the product of two $\theta[\varphi]$ —blocks from which the isomorphism is apparent. Let $\theta[\varphi] = \psi$ for short. The first two cases are obvious from the definition of $\theta[\varphi]$:

(1)
$$(\psi x)(\psi y) = (\varphi x)(\varphi y)$$
 if $\theta x = \theta y = \theta e$

(2)
$$(\psi x)(\psi y) = (\theta x)(\theta y)$$
 if θx , $\theta y \neq \theta e$.

When computing these products, replace θe by $\{ \varphi x : x \in \theta e \}$. For the other cases,

(3)
$$(\psi x)(\psi y) = \theta y$$
 if $\theta x = \theta e \neq \theta y$

(4) $(\psi x)(\psi y) = \theta x$ if $\theta y = \theta e \neq \theta x$.

To verify (3) first note that $(\varphi x)(\theta y) \subseteq (\theta e)(\theta y) = \theta y$. Now, suppose $y' \theta y$. Then $y' \in x \cdot z$ for some z (using (P_2)); so $y' \in x(\theta z) \subseteq (\theta e)(\theta z) = (\theta z)$. Then $(\theta y) \cap (\theta z) \neq \emptyset$ so $\theta z = \theta y$ which gives $\theta y \subseteq x(\theta y) \subseteq (\varphi x)(\theta y)$ as desired. The proof of (4) is similar so $\theta[\varphi]$ is a conjugacy relation. The isomorphism is established by comparing (1), (2), (3), (4) with the definition of the product on the polygroup $(\theta e//\varphi)[M//\theta]$.

For $\varphi \leq \psi$ in Conj(M) let $[\varphi,\psi]$ denote the interval $\{\theta: \varphi \leq \theta \leq \psi\}$ in Conj(M). The map $\varphi \longmapsto \theta[\varphi]$ immediately gives

Corollary 4.3. Conj(θe) is isomorphic to the interval $[\theta[\delta_{\theta e}], \theta]$ in Conj(M).

For a subset X of a polygroup such that $e \in X$ we let $X^* = X \setminus \{e\}$. There is one splitting of a conjugacy θ that deserves special attention. Namely, for a conjugacy θ let

$$\theta^{S} = \theta[\mathbb{1}_{\theta_{\Theta}}^{S}]$$

where $\mathbb{1}_{\theta e}^{s}$ is the unity element in $\operatorname{Conj}_{s}(\theta e)$. In other words, θ^{s} is a special conjugacy (by 4.2) obtained from θ by splitting θe into the two classes: $\{e\}$ and $(\theta e)^{*}$.

The splitting operation above is a useful way to show that certain equivalence relations are conjugacies. For example, consider the equivalence relation $\theta = \{0; 2; \alpha, \beta, 1, 3\}$ on S_3 used in 2.2(ii). It follows that $\theta \in \text{Conj}(S_3)$ because $\theta = \overline{\theta}_H^S$ where $H = \{0,2\}$ is a subgroup of S_3 .

A few elementary properties of θ^{S} are given below.

Proposition 4.4. For $\theta, \varphi \in \text{Conj}(M)$

- (i) $\theta^{S} = \theta$ if θ is special and $\theta^{S} = \theta \cap \mathbb{1}^{S}$ if θ is not special,
- (ii) $\theta^{S} \leq \theta$,
- (iii) θ covers θ^{S} in Conj(M) if θ is not special,
- (iv) $\varphi \leq \theta$ implies $\varphi^{S} \leq \theta^{S}$,
- (v) θ is determined by θ^s and θe . Namely, $\theta = \theta_N | \theta^s$, a commuting join, where $N = \theta e$.

Proof. (v). Suppose $x\theta y$. If $\theta x \neq \theta e$, $\theta^S x = \theta x$ so $x\theta_N x \theta^S y$ and if $\theta x = \theta e$ (=N), $x\theta_N y \theta^S y$. Thus, $\theta \leq \theta_N | \theta^S$.

Information about the structure of Conj(M) can be obtained from 4.4(v). For example, if G is an Abelian group, every $\theta \in \text{Conj}(G)$ is a join of a congruence relation and a special conjugacy. In particular, if θ is V—irreducible in Conj(G), either θ is V—irreducible congruence relation or V—irreducible special conjugacy. The converse does not hold, for example, $\text{Con}(\mathbb{Z}_8)$ is a 4 element chain but $1 = \theta_{<2>} \lor 1^8$ is not V—irreducible in $\text{Conj}(\mathbb{Z}_8)$. (See figure 2.)

The map $\theta \longmapsto \theta^S$ is shown to be a lattice homomorphism of $\operatorname{Conj}(M)$ onto $\operatorname{Conj}_S(M)$ in 4.6 below. Towards this goal the following lemma about lattices is needed.

LEMMA 4.5. If h is a join retract of a lattice L onto an ideal of L (ie., $h: L \longrightarrow L$ satisfies $h(x \lor y) = (hx) \lor (hy)$, $hx \le x$, h(hx) = hx for all $x,y \in L$ and h(L) is an ideal of L), then h is a homomorphism.

Proof. Since h preserves order, $h(x \wedge y) \leq (hx) \wedge (hy)$. If $z \leq (hx) \wedge (hy)$, then $z \leq hx \leq x$ and $z \leq hy \leq y$ so $z \leq x \wedge y$. Hence $z = hz \leq h(x \wedge y)$ because $z \leq hx \in h(L)$ implies $z \in h(L)$ and h fixes elements of h(L). Thus, $(hx) \wedge (hy) = h(x \wedge y)$.

PROPOSITION 4.6. The map $\theta \longmapsto \theta^s$ is a lattice homomorphism of $\operatorname{Conj}(M)$ onto $\operatorname{Conj}_s(M)$.

Proof. Applying 4.5, by 4.4(i),(ii) and 2.1(ii), it suffices to show the map preserves joins. Since \leq is preserved by 4.4(iv) we only need to show that $(\theta \lor \varphi)^S \leq \theta^S \lor \varphi^S$ in Conj(M). Suppose $x(\theta \lor \varphi)^S y$ and $x,y \neq e$. Then there exist a sequence $x = x_0, ..., x_n = y$ such that $x_0\theta x_1\varphi x_2...x_{i-1}\theta x_i\varphi x_{i+1}...x_n$. If $x_j\theta x_{j+1}$ and $x_j, x_{j+1} \neq e$, then $x_j\theta^S x_{j+1}$ and similarly for φ . Hence we may assume $x_i = e$ and $x_{i-1}, x_{i+1} \neq e$ for some i. Then $x_{i-1} \in H = \theta e$ and $x_{i+1} \in K = \varphi e$. If $x_{i+1} \in H$, then $x_{i-1}\theta x_{i+1}\theta x_{i+2}$ and we may drop $e = x_i$ from the sequence. Hence we may assume $x_{i+1} \notin H$. Then $e \notin x_{i-1} \cdot x_{i+1}$ because if so, $x_{i+1} = x_{i+1}^{-1} \in H$. Choose $x_i' \in x_{i-1} \cdot x_{i+1}$. Then $x_i' \in H x_{i+1} \subseteq H x_{i+1} H \subseteq \theta x_{i+1}$ and $x_i' \in x_{i-1} K \subseteq K x_{i-1} K \subseteq \varphi x_{i-1}$ so $x_{i-2}\varphi x_{i-1}\varphi x_i' \theta x_{i+1}\theta x_{i+2}$ which means we can shorten the sequence from x_0 to x_n and eliminate the term $x_i = e$. Repeating the above for all $x_i = e$ we obtain $x_i = x_0' \theta x_1' \varphi ... x_m' = y$ where all $x_i' \neq e$. Thus, $(x,y) \in \theta^S \lor \varphi^S$. \Box

For $\varphi, \theta \in \text{Conj}(M)$ and $\varphi \subseteq \theta$, we define a conjugacy $\theta //\varphi$ on $M//\varphi$ by

$$(\varphi x)(\theta//\varphi)(\varphi y) \iff x \theta y$$

for all $x,y \in M$. The first part of the following theorem gives a lattice version of the First Isomorphism Theorem from group theory.

THEOREM 4.7. Suppose $\varphi \in \text{Conj}(M)$. Then

- (i) The map $\theta \longmapsto \theta//\varphi$ is an isomorphism of the interval $[\varphi, 1]$ in Conj(M) onto $Conj(M//\varphi)$.
- (ii) $\theta//\varphi$ is special in $\operatorname{Conj}(M//\varphi)$ iff $\theta e = \varphi e$. Moreover, the map in (i) is an isomorphism of the interval $[\varphi,\overline{\varphi}]$ in $\operatorname{Conj}(M)$ onto $\operatorname{Conj}_{S}(M//\varphi)$.

- (iii) The map $\theta \longmapsto \theta^s$ is an isomorphism of $[\varphi, \overline{\varphi}]$ in Conj(M) onto $[\varphi^s, \overline{\varphi}^s]$ in $Conj_s(M)$.
- (iv) If φ is not special, the map $\theta \longmapsto \theta^{S}$ is an isomorphism $[\varphi, \mathbb{1}] \cong [\varphi^{S}, \mathbb{1}^{S}].$
- (v) If N is a subpolygroup of M, $\operatorname{Conj}_{S}(N) \cong [\theta_{N}[\delta], \theta_{N}^{S}], a$ sublattice of $\operatorname{Conj}_{S}(M)$.

Proof. (i) is a tedious but straightforward argument.

- (ii). $\theta//\varphi$ is special iff $(\varphi x)(\theta//\varphi)(\varphi e) \Rightarrow \varphi x = \varphi e$ iff $x\theta e t$ $\Rightarrow x\varphi e$ iff $\theta e \subseteq \varphi e$. But $\varphi e \subseteq \theta e$ always holds since $\varphi \subseteq \theta$. Since $\theta \in [\varphi,\overline{\varphi}]$ iff $\varphi e \subseteq \theta e$, the restriction of the map in (i) gives the desired isomorphism.
- (iii). If φ is special, $\theta^S = \theta$ for θ in $[\varphi,\overline{\varphi}] \subseteq \operatorname{Conj}_S(M)$. Assume $\varphi \neq \{e\}$. Since $\theta \longmapsto \theta^S$ is a lattice homomorphism it suffices to show the map is (1) one—one and (2) onto. For (1) suppose $\theta_1 \neq \theta_2$ in $[\varphi,\overline{\varphi}]$. Since $\theta_1 = \varphi = \theta_2 e$, there exist $x \notin \varphi e$ such that $\theta_1 x \neq \theta_2 x$. By 4.4(i), $\theta_1^S x \neq \theta_2^S x$ so the images are distinct and thus (1) holds. For (2) assume θ is in $[\varphi^S,\overline{\varphi}^S]$. Define $\theta^+ = \{\underline{\varphi}e;\underline{\theta}x_1;...\}$ where $\theta = \{\underline{e};\underline{(\varphi e)}^*;\underline{\theta}x_1;...\}$. Since $(\theta^+)^S = \theta$ it suffices to show that θ^+ is a conjugacy. If $x\theta^+ y$, it is clear that $x^{-1}\theta^+ y^{-1}$ since $(\varphi e)^{-1} = \varphi e$ and $(\theta x_i)^{-1} = \theta(x_i^{-1})$ for all i; thus, condition (2) of 1.1(i) holds. To verify (1) in 1.1(i) we need to show $(\theta^+ x)(\theta^+ y)$ is a union of θ^+ —blocks. First we show $(\varphi e)(\theta x_i) = \theta x_i$. This holds because $\theta \supseteq \varphi^S$ and $\theta x_i \neq \varphi e$ implies that θx_i is a union of φ —blocks $\theta x_i = (\varphi x_i) \cup ... \cup (\varphi x_i') \cup ...$ and $(\varphi e)(\varphi x_i') = \varphi x_i'$ for each component $\varphi x_i'$. It remains to see that $(\theta x_i)(\theta x_j)$ is a union of θ^+ —blocks. For this it suffices to show

$$\left(\varphi e\right)^*\subseteq (\theta x_i)(\theta x_j)\quad \mathrm{iff}\quad e\in (\theta x_i)(\theta x_j).$$

For (\Longrightarrow) choose $x \in (\varphi e)^*$. Then $x \in x_i' \cdot x_j'$ for some $x_i' \theta x_i$, $x_j' \theta x_j$. Since $\theta x = \varphi^S x \subseteq (\varphi^S x_i')(\varphi^S x_j') = (\varphi x_i')(\varphi x_j')$, $e \varphi x$, and φ is a conjugacy, $e \in (\varphi x_i')(\varphi x_j') \subseteq (\theta x_i)(\theta x_j)$. The implication (\Longleftrightarrow) is similar, so $\theta^+ \in \text{Conj}(M)$ which completes the proof of (iii).

- (iv) holds by an argument similar to (iii).
- (v) follows from 4.3 and the observation that $\theta_N[\varphi]$ is special iff φ is special. \square

In 4.7(iv) if $\varphi \in \operatorname{Conj}_{S}(M)$, the homomorphism is, in general, not one—one.

5. Epilogue

In sections 3 and 4 (e.g., 3.4, 3.5, and 4.2) several techniques were given for creating conjugacy relations on a polygroup. Also, several isomorphisms (e.g., 4.3, 4.6, 4.7) were established which allow for the study of parts of Conj(M). The techniques described in the previous sections play a fundamental role in the proofs of the following two results. The proofs are extremely long and are omitted.

Theorem 5.1. For a group G, $\operatorname{Conj}(G)$ is a modular lattice if and only if $G \cong \mathbb{I}_n$ for n=1,2,3,4,5,7. Moreover, $\operatorname{Conj}_S(G)$ is a modular lattice but $\operatorname{Conj}(G)$ is not modular if and only if $G \cong \mathbb{I}_2 \times \mathbb{I}_2$.

THEOREM 5.2. There exist a lattice formula that defines 1^S in Conj(G) for all groups G not isomorphic to \mathbb{Z}_4 . On the other hand, $G \cong \mathbb{Z}_4$ if and only if Conj(G) has the form

We conclude with an application of 5.2 which uses several of the results developed in sections 3 and 4.

THEOREM 5.3. If G and G' are finite Abelian groups and $\operatorname{Conj}(G) \cong \operatorname{Conj}(G')$, then $\operatorname{Con}(G) \cong \operatorname{Con}(G')$, i.e., the subgroup lattices of G and G' are isomorphic.

Proof. The proof breaks into two cases: (1) G is not isomorphic to \mathbb{Z}_{2^k} for any k, and (2) $G \cong \mathbb{Z}_{2^k}$ for some k.

Assume (1) and let $f:Conj(G) \rightarrow Conj(G')$ be an isomorphism onto Conj(G'). We want to show that the restriction of f to the Con(G) is an isomorphism onto Con(G'). induction on the height of θ_H in Con(G), we prove that $f(\theta_H) \in Con(G')$ and that f is an isomorphism of $[\theta_H, 1]$ onto [$f\theta_H$,1]. This is clear for $\theta_{\{e\}}$ which is the smallest element of both lattices. If G is simple, 1 is V-irreducible and Con(G) = $\{\delta,1\}$ by 3.5(ii). Therefore G' is simple and clearly f1=1. Assume G is not simple. Since G is not isomorphic to \mathbb{Z}_4 , $\mathbb{1}^8$ is definable in Conj(G) and also in Conj(G') by 5.2. Thus $f(1_G^S)$ = $\mathbb{1}_{G'}^{S}$. Therefore, by 3.4(ii) f carries each atom θ_{H} in Con(G) to an atom $f(\theta_H)$ in Con(G'). Thus the conclusion is true for all θ_{H} of height 1 in Con(G). Suppose the result is true for all θ_{H} of height $\leq n$ and consider elements of height n+1. Since such an element covers a $\, heta_{
m H}\,$ of height n, we may consider $\, heta_{
m K}\,$ as an atom in the lattice $[\theta_H, 1]$ which is isomorphic by f to $[f\theta_H, 1] \subseteq$

Conj(G'). If G/H is not isomorphic to \mathbb{Z}_4 , then \mathbb{I}^8 is definable in $[\theta_H, 1] \cong \text{Conj}(G/H)$, by 4.7(i), and also in $[f\theta_H, 1]$. In this case, by 3.4(ii) θ_{K} is mapped to a corresponding element in Con(G'). Now, suppose $G/H \cong \mathbb{Z}_4$. The nontrivial proper subgroup of \mathbb{Z}_4 corresponds to a unique element θ_{K} in Con(G) that covers θ_{H} . We claim there exist a subgroup L of G incomparable to K. (For if not, every subgroup of G is comparable with K which implies $G \cong \mathbb{Z}_{2^k}$ for some k by the Fundamental Theorem of Finite Abelian Groups.) Now, L & H because L & K; $HVL \geq K$ since K is the only cover of H in the subgroup lattice of G. By the modular law $HV(L \cap K) = K \cap (HVL) = K$ because K \geq H. Also, H \nsubseteq L because only K and G extend H; so K \cap L \neq H and θ_{KOL} has height \leq n. Since f is a lattice isomorphism, $f(\theta_K) = f(\theta_H) V f(\theta_{L \cap K})$ belongs to Con(G') because $f(\theta_H)$ and $f(\theta_{L\cap K})$ belong by the induction assumption. Moreover, since $G/H \cong \mathbb{Z}_4$, f restricted to $[\theta_K, 1]$ is an isomorphism. completes the proof of (1).

(2) is proved by a straight forward induction on k. \Box

Figure 1, $Conj(S_3)$

Figure 2, $Conj(\mathbb{Z}_8)$

Bibliography

- 1. Campaigne, H., Partition Hypergroups. Amer. J. Math. 62(1940), 599-612.
- 2. Comer, S., Combinatorial Aspects of Relations. Algebra Univ. 18(1984), 77-94.
- 3. Comer, S., Polygroups Derived from Cogroups. J. Algebra 89(1984), 397-405.
- 4. Comer, S., Extensions of polygroups by polygroups and their representations using color schemes. In, Universal Algebra and Lattice Theory (R.S. Freese and O.C. Garcia, editors), Lect. Notes in Math. #1004, Springer-Verlag, 1983, 91-103.
- 5. Corsini, P. Prolegomeni alla Theoria degli ipergruppi. Quaderni dell' institudo di Math, Inform. e Sist (Udine), 1986, 127 pp.
- 6. Dietzman, P. On the multigroups of complete conjugate sets of elements of a group. C.R. (Doklady) Acad. Sci. URSS (N.S.) 49(1946), 315-317.
- 7. Dresher, M. and O. Ore, Theory of Multigroups. Amer. J. Math. 60(1938), 705-733.
- 8. Marty, F., Sur une generalization de la notion de groupe. Huitieme Congrès des mathématiciens scand., Stockholm, 1934, 45-49.
- 9. Schweigert, D., Congruence Relations of Multialgebras. Discrete Math. 53(1985), 249–253.