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LATTICES OF CONJUGACY RELATIONS

Stephen D. Comer!
The Citadel, Charleston SC 29409, U.S.A.

This paper describes a few elemehta,ry properties of the lattice of
conjugacy relations of a group. A decomposition of a group into
double cosets as well as its decomposition into ordinary conjugacy
classes give examples of conjugacy relations. The notion was first
defined in the case of groups in Marty [8] to provide examples of
hypergroups. An equivalence relation always gives rise to a
"quotient" structure. In the case of a conjugacy relation this
"quotient" will not necessarily be a group, but a system that we
call a polygroup. A polygroup is a special kind of hypergroup in
the sense of Marty [8] or multigroup in the sense of Dresher and
Ore [7]. Because an isomorphism theorem (THEOREM 4.7) allows us
to relate an interval [f4,1] in the conjugacy lattice of a group G
with the conjugacy lattice of the polygroup "quotient" G//4,
properties for conjugacy relations are developed in the context of a
polygroup.

In this paper we will mainly consider conjugacies derivable from
subsystems of polygroups and techniques for creating other
conjugacies from these. A lot of information about a group is
coded into its conjugacy lattice. It is conjuctured that the
conjugacy lattice Conj(G) of a finite group G determines the
group. To obtain some evidence for this conjecture it is shown that
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for a finite abelian group G, Conj(G) determines the subgroup
lattice of G.

1. Polygroups

In this paper the same symbol is used to denote a function and
its obvious extension to sets, eg., we use the symbol f to denote

both a function £ Mk

Sb(M)X— Sb(M) defined by
f(XO,...,Xk__l) = U{f(xo,...xk__l) : x€X, for all i<k }

for X, Xy EM.

A polygroup is a system <M,-,

— Sb(M) and its natural extension

-1 1

> where eeM, ~ is a
unary operation on M, - assigns a nonempty subset of M to each
element of MxM, and the following axioms hold for all x,y,zeM:

(Py) ex={x}=x-¢

(Py) xe€y-z implies ye}c-z_1 and zey_l-x,
(Ps)  (x-y)-z=x(y-2).

Note that in (P3) the extension of - to subsets of M is used. To
make reading easier we also identify a singleton subset with its
unique element. The product x-y will frequently be denoted by
Jjuxtaposition xy.

A polygroup, as defined above, is a system of type <2,1,0>. As
with groups, the notion could be defined as a system of type
<2,0>. A polygroup is a special case of the notion of hypergroup
introduced by Marty [8] and of multigroup due to Dresher and Ore
[7].

For a subgroup H of a group G the collection G//H of all
double cosets of H forms a polygroup with the natural operations
(cf., [7]). A polygroup made from all conjugacy classes of a group
G was defined in [8] and discussed in Campaigne [1] and Dietzman
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[6]. A dual equivalence between the category of polygroups and the
category of complete atomic integral relation algebras is established
in Comer [2] where other examples of polygroups are given.

The two examples of polygroups given above are formed from
equivalence classes on a group. The first collected double cosets
together into an algebraic system and the second collected
conjugacy classes together. The notion of a general conjugacy
relation, given below, abstracts properties of these two equivalence
relations. The notion was first defined, in the case of groups, by
Marty [8] who called the relations conjugations. This terminology
was used by in [1] and [2].

DEFINITION 1.1. Suppose <M,-,”1

,e> 18 a polygroup. Then
(i) A4 conjugacy relation on M is an equivalence relation on M
such that for all z,y,2,2’ € M:

(1) 2z Ozxz-y implies Iz’,y’( 2’ bz, y’ Oy, and 2z’ €z’ -y’)

(2)  z0y implies xnlﬂy_l.

(ii) A conjugacy @ on M is a special confugacy if, for all ze M, z0e
implies = = e.

Using the notation 6&x = {y: yfx }, a conjugacy relation on M
can be described, alternatively, as an equivalence relation ¢ such
that for all x,yeM:

(17)  O(xy) € (6x)(dy) and
(2)  (60)7= 0.
A conjugacy is special if fe = {e}.
We say that N is a subpolygroup of a polygroup <M,-,_1,e>
if NCM, eeN, and for all x,yeN x “eN and x-y C N.

ExampLE 1.2. (i) For a subpolygroup H of M define a relation
49H for x,y €M by
XHHy iff HxH = HyH.
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(ii) If H is a subgroup of Aut(M), define a relation o for
x,yéeM by

x6’Hy iff o(x) =y for some oeH.

The relation 0H is a conjugacy and the relation ¢9H is a special
conjugacy on M.

A quotient polygroup can be associated with a conjugacy
relation f on a polygroup M. On theset M = { fx : xeM } of all
6—blocks of an equivalence relation # on M operations are
defined, for x,yeM, by

(3) (6x)*(8y) = {0z : 0z C (6x)(0y) } and
(4) ()71 = a7t

The system <0M,*,_1,Ge>, denoted by M//4, is a polygroup
whenever @ is a conjugacy relation. In fact, PROPOSITION 2.1 of [2]
shows that the system M//6, obtained from M wusing the
"induced" operations in (3) and (4), is a polygroup if and only if ¢
is a conjugacy relation.

A reader should be aware that there are two common ways for
an operation - to induce an operation on ¢M (and make a
quotient). Onme is given in (3) and the other is defined by

(5) (0x)o(8y) = { 0z : 0an(0x)(0z) # 8 }
for all x,yeM.

The operation defined in (5) is the one normally used to define a
quotient structure M/# of a multivalued algebra, cf., Schweigert
[9] or Corsini [5], THEOREM 8. It leads to the notion of a congruence
relation on a multivalued algebra. In 3.2 below it is shown that a
congruence relation on a polygroup is a conjugacy relation
associated with a normal subpolygroup. Of course, there are many
other conjugacies.
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2. The Conjugacy Lattice

For a polygroup M let Conj(M) denote the collection of all
conjugacy relations on M and let Coan(M) denote the collection
of all special conjugacies. The smallest conjugacy relation is the
identity relation, denoted by 6M, and the largest conjugacy

relation is M2 which is denoted by ]lM. Let lll\s,I denote the
special conjugacy relation which identifies all elements of M
different from the identity e. When the polygroup M is understood

s . . . §
4, 1, and 1° will be written instead of 5M’ ]IM, and ]IM.

ProposITION 2.1. If M is a polygroup, then
(i) Conj(M) forms a complete lattice whose join is the same as the
Join in the lattice of all equivalence relations on M,

(ii) Conj (M) is the principal ideal in Conj(M) determined by 15,

Proof. (i). It suffices to show, for every nonempty set S of
Conj(M), that the join IS of S (in the lattice of all equivalence
relations on M) is again a conjugacy. Suppose z’(¥S)zex-y. Then
20yz,0,29...0, 4z = 2z’  for some ZysesBy (€M and
90,...,0n_leS. Because 006 Conj(M), z,€x; -y, for some x100x
and y, f,y by 1.1(i)(1). Repeat for 01""’0n—1 to obtain XXy
and Yqs++¥y, Such that xﬂoxlﬁl...ﬁn_lxn, yﬂoylﬂl...()n_lyn and
zi€x;-y; forall i<n. Hence x (ZS)x, y,(ES)y, and 2 EX Y ;
so condition (1) of 1.1(i) holds for £S. The verification of

condition (2) in 1.1(i) is routine.

(ii) is obvious since feConj(M) is special if and only if < 15. o

REMARK 2.2. (i) There are situations when it is desirable to regard
a conjugacy on M as a partition of M instead of an equivalence
relation. Partitions and equivalence relations will be interchanged
freely. Partitions will be written in the form {A;B;...} where A,
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B, ... are the blocks of the partition, eg., {0;1,2;3,4,5} is the
partition with blocks {0}, {1,2}, and {3,4,5}. The largest special

conjugacy relation 1. denotes the partition {e;M\{e}}.
Jugacy M

(ii) The join and meet in Conj(M) (and Conj (M) ) are denoted by
v and A, respectively. Neither Conj(M) nor Coan(M) is a
sublattice of the partition lattice, in general, because the
intersection of two conjugacy relations is not necessarily a
conjugacy. We give an example involving conjugacies on S3. (The
complete lattice Conj(S3) is given in Fig. 1). Let S3 =
{0,1,2,3,0,6} where the elements denote the identity permutation,
(2,3), (1,3), (1,2), (1,2,3), and (1,3,2) respectively. Then 0 =
{0;2;0.0,1,3} and ¢ = {0;3;0,6,1,2} are special conjugacy relations
on S3 (by the comment proceeding 4.4 below), but Ohy =
{0;2;3;2,0,1} is not a conjugacy because 1(fnp)a = 3-2 and 1 +#
3-2. The lemma below and the fact that S; is generated by {2,3}
shows that, for § and ¢ above, 0Ap = § (= the identity conjugacy
relation).

LeMMA 2.3. If G is a group and HECoan(G), then H = {z€G : | 0z
=1} is asubgroup of G.

Proof. Clearly eeH and H is closed under inverses. If x,y € H,
then
0(xy) € (6x)(y) € {xy}

so H is closed under products also. o

3. Conjugacy Relations Determined by Subsystems

In 1.2 a conjugacy relation, HH, was associated with a
subpolygroup H of a polygroup M. It is shown in 3.2 that these
conjugacies include all congruence relations. The definition of a
congruence relation on a polygroup given below is a special case of
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the definition used in [9] for general multialgebras.

DeriniTion 3.1 An equivalence relation § on a polygroup M is a
congruence relation if for all z,y,u,ve M
(1) 20y, wbv implies (z-u)d(y-v), where for A,B C M,
AOB means that for every a€A there is a beB such
that afb and vice—versa.

(2) z0y implies a:nlﬁy'_l.

The lattice of all congruences on M is denoted by Con(M). A
subpolygroup H of M is normal if xH = Hx for all xeM (cf,
Dresher and Ore [7]).

The next result will help to decompose a conjugacy relation into
a double coset relation 6’H and a special cbnjugacy. It is a
polygroup version of THEOREM 5 in [3]. It also shows that
congruence relations correspond to normal subpolygroups.

THEOREM 3.2. Suppose M 1is a polygroup.

(i) If 0eConj(M) and N = fe, then N is a subpolygroup of M
and ()Ng f.

(ii) For an equivalence relation 0 on M, 0eCon(M) if and only if
g = ON for some normal subpolygroup N of M.

Proof. (i) It is clear that eefe and 6e is closed under -1 by (2)
of 1.1(i). Now suppose z€x-y where x,yefe. Then, by (Pj),

el%cez-y“1 so (1) of 1.1(i) implies eez’-y’ for some z’0z and

y’ﬁy_l. But in a polygroup e€z’-y’ gives z’ = (y’)“1 and

(y“l)“1 =y so zlz'= (y')""‘lo(y"“l)”1= yfe which shows zfe.
Thus, 0e is a subpolygroup of M. To show HN C 6, suppose
x0yy, i.e, NxN = NyN. Then, xéNxN = NyN C (fe)(ly)(be) =
0y since Oe is the identity of M//0. Thus, xfy which completes
the proof.
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(ii) It is straightforward to show that 0N €Con(M) whenever N
is a normal subpolygroup of M ;so (¢=) holds. For (=), suppose
0eCon(M). To show @eConj(M) it suffices to verify (1) of 1.1(i)

so we suppose z’fzexy. Then xezy_1¢9z’y_1 by (P;) and

0eCon(M). It follows that there exist x’fx with x’€z’y_1, ie.,
z'ex’y using (P2). Hence feConj(M). Now, by 3.2() 02 Oy
where N = fe is a subpolygroup of M. Suppose xf@y. Then

eEx-x_IGy-x"l by 3.1(1), so there exist zeN with zny_l.
Thus, y€z-x C Nx which gives xHNy. Hence, 0 = 0N' It remains
to show that N is normal. If yeNx, then xfy which implies

eEx_lxﬂx_ly by 3.1(1). Thus, for some zfe, z€x_1y which gives
yexz C xN. Therefore Nx C xN. The other inclusion is similar, so
it follows that N is normal. ]

By 1.2(i) a conjugacy relation 6 is associated with every
subpolygroup N of M, not just the normal ones. The following
summarizes a few properties of this embedding.

ProrosiTiON 3.3. For a polygroup M,

(i) Themap N+ 0N embedds the lattice of subpolygroups of M
into Conj(M) as a poset, in fact as a join semilattice.

(ii) The image of the map in (i) has only 0 e = d in common
with Conj (M). In particular, 'Con(M)nConjséM) = {6}.

(ili) If G is a group, Con(G) is a sublattice of Conj( G).

Proof. (i) Suppose H and K are subpolygroups of M and
<H,K> is the subpolygroup generated by H and K. It suffices
to show that BHVBK =0 <HK>' If H and K are comparable,
say H CK, then <H,K> = K and 0HV6’K = O = 0<H K>
clearly holds. Assume that H and K are not comparable. Then
(0gVlg)e > H and (0gVor)ed K so (6Vox)e 2 <H,K>. By
3.2(i), OVl 2 0<H,K>' Since the other inclusion is clear,
equality holds.
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ii) If #€eConj (M), then H = {e} by 3.2 and 0,y = 6.
H S H
iii) By a standard group theory argument @ ;nf,, = 6 ;S0
& H'""K = "HnK
HHnHK is a conjugacy relation which equals 0HA0K. a]

The embedding in 3.3 is not, in general, a lattice embedding.
For example in S; (using the notation in 2.2(ii)), if H = {0,1} and
K = {0,0,0}, then HNK = {0} but Ol = {0;1;0,0,2,3} €
Conj(S3) which gives OghOy # 6= Yank:

Certain extreme elements in Conj(M) can be described in terms
of conjugacies related to subpolygroups. The dual atoms and the
minimal non—special elements in Conj(M) are described below. If
N is a subpolygroup of M, the partition {N;M\N} is a conjugacy

relation on M which we denote by PN. For an arbitrary

weConj(M) let » = 'HN where N = ge. Observe that p = 1°
whenever ¢ is special.

ProrosiTION 3.4. (i) The dual atoms in Conj(M) are ezactly the
conjugacy relations "GN where N is a proper subpolygroup of M.

(ii) The minimal elements of the poset { fcConj(M): 04 1°} are
the elements @ N where N is an atom in the subalgebra lattice of M.

Proof. (i). Suppose §is a dual atom of Conj(M). N = fe is a
proper subpolygroup of M, by 3.2(i) and 6 < PN. Since @4 is a

dual atom 6 = PN.
(ii). If 6is not a special conjugacy relation, N = fe # {e} and, by
3.2(i), 0N < 0. If #is minimal and not special, then BN =0 0

CoROLLARY 3.5. (i)  The number of dual atoms in Conj(M) is
equal to the number of proper subpolygroups of M. In particular,

15 = Z){e}.
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(i) for a group G, 1 1is V—irreducible in Conj(G) iff G is a simple
abelian group.

4. Splitting Conjugacy Relations

In this section we describe techniques for investigating intervals
in Conj(M) that lie above or below a given non—special conjugacy
relation.

By 3.2(i) the block fe of a conjugacy 0 is a subpolygroup. A
new conjugacy 6[¢] may be obtained from @ by replacing the fe
block by the blocks of a conjugacy @eConj(fe). More precisely,

DEFINITION 4.1. For 6 € Conj(M) and ¢ € Conj(fe), the p—split
of 0 is an equivalence relation 0lp] on M defined by

{99} if Oz 4 Oe

Ol¢lz = _ :
pr if Oz = fe

PRrOPOSITION 4.2.  f[p|eConj(M).  Moreover, M[/(6[¢]) s
isomorphic to (fe/]p)[M]]6), the polygroup extension of fef[¢ by
M] [0 introduced in [4].

Proof. To verify the first statement it suffices to show that the
product of two #[¢]-blocks is a union of f[p]~blocks. Along the
way we develop a rule for computing the product of two
6 ¢]-blocks from which the isomorphism is apparent. Let f¢] = ¢
for short. The first two cases are obvious from the definition of

0 ¢):
(1) (¥)(¢y) = (ex)(gy) if Ox=0y=0le
(2) (¥)(gy) = (0x)(0y) if Ox, Oy ¢ Ge.

When computing these products, replace fe by { ¢x : xefe }.
For the other cases,

(3) (px)(dy) =0y if Ox=fe# 0y
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(4) (Wx)(dy)  =0x  if Oy=fetbx
To verify (3) first note that (¢x)(dy) C (fe)(dy) = 0y. Now,
suppose y’fy. Then y’ex-z for some z (using (P3)); so y’ €
x(0z) C (0e)(0z) = (0z). Then (6y)n(fz) + § so 6z = Oy which
gives @y C x(fy) C (px)(fy) as desired. The proof of (4) is similar
so d¢] is a conjugacy relation. The isomorphism is established by
comparing (1), (2), (3), (4) with the definition of the product on

the polygroup (fe//p)[M//4]. o

For ¢ < 4 in Conj(M) let [p,9] denote the interval { §: ¢ <
< ¢} in Conj(M). The map ¢+ f¢] immediately gives

CoroLLARY 4.3. Conj(fe) is isomorphic to the interval [0[696],(9]
in Conj(M).

For a subset X of a polygroup such that e € X we let

*
X = X\{e}. There is one splitting of a conjugacy @ that deserves
special attention. Namely, for a conjugacy @ let

0 = o1,]

where ]lsée is the unity element in Conjs( fe). In other words, ¢° is

a special conjugacy (by 4.2) obtained from @ by splitting fe into

*
the two classes: {e} and (fe) .

The splitting operation above is a useful way to show that
certain equivalence relations are conjugacies. For example,
consider the equivalence relation 0 = {0;2;¢,0,1,3} on S3 used in

2.2(ii). It follows that 0eConj(S;) because @ = P}SI where H =
{0,2} is a subgroup of Sj.

A few elementary properties of ¢ are given below.
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ProPOSITION 4.4. For 6,p € Conj(M)

(i) 6 = 0 if 0is special and 6° = 0n1° if 0 is not special,
) <o,

(iii) @ covers ¢ in Conj(M) if 0 is not special,

(iv) @< 8 implies o< P,

(v) 0 is determined by 0° and fe. Namely, 6 = 0N| 0, a
commuting join, where N = fe.

Proof. (v). Suppose xfy. If Ox # fe, °x = 6x so xﬂNxﬂsy and if
0x = be (=N), x0py0°y. Thus, 0< 6| 6. 0

Information about the structure of Conj(M) can be obtained
from 4.4(v). For example, if G is an Abelian group, every
#€ Conj(G) 1is a join of a congruence relation and a special
conjugacy. In particular, if 6 is V—irreducible in Conj(G), either
is V—irreducible congruence relation or V-irreducible special
conjugacy. The converse does not hold, for example, Con(ZZs) isa4d

element chain but 1= ¢ <2>V]lS is not v—irreducible in Conj(lls).
(See figure 2.)

The map 6 +— % is shown to be a lattice homomorphism of
Conj(M) onto Coan(M) in 4.6 below. Towards this goal the
following lemma about lattices is needed.

LEMMA 4.5. If h is a join retract of a lattice L onto an ideal of L (ie.,
h: L — L satisfies h(aVy) = (ha)V(hy), hz < z, h(hz) = hz for all
z,y € L and h(L) is an ideal of L), then h is a homomorphism.

Proof. Since h preserves order, h(xAy) < (hx)A(hy). If
z < (hx)A(hy), then z < hx<x and z<hy<y so z<xAy. Hence
z = hz < h(xAy) because z < hx € h(L) implies z € h(L) and h
fixes elements of h(L). Thus, (hx)A(hy) = h(xAy). u
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PROPOSITION 4.6. The map 0+ 6° is a lattice homomorphism of
Conj(M) onto Conj (M).

Proof. Applying 4.5, by 4.4(i),(ii) and 2.1(ii), it suffices to show
the map preserves joins. Since < is preserved by 4.4(iv) we only

need to show that (Ve)® < vy’ in Conj(M). Suppose x(V )%y
and x,y # e. Then there exist a sequence x = XgoeeeXpy =¥ such

that X00X1<PX2 - 10x OX; | - Xp- If xJﬂx.H_1 and xJ xj+1$e,

then xjﬂng +1 and similarly for ¢. Hence we may assume X, =e
and X1 %41 + e for somei. Then X;_ (€ H = fe and xi+le K

= pe. If X+1€H then X ﬂx bx. and we may drop e =

i+177142
X, from the sequence. Hence we may assume X, +1¢ H. Then e¢
. - ,
X_1"%i41 because if so, x; 41 = % € H Choose  x! €
X1 %1 Then X! € Hx C Hx, +1H C Hx and X! € xi—lK

CKx, (K Cox so X 2<,ox1 19%: 1 6x, 6‘x which means we

i+177142
can shorten the sequence from Xy to x and eliminate the term X,

= e Repeating the above for all x, = e we obtain

X = X(l)exi‘p"'xﬁl =y where all x{ #e. Thus, (x,y) € 9SchS. |

For ¢,0cConj(M) and ¢ C 6, we define a conjugacy 6//¢ on
M//y by
(ex)(0//0)(py) & xby
for all x,yeM. The first part of the following theorem gives a
lattice version of the First Isomorphism Theorem from group
theory.

THEOREM 4.7. Suppose ¢ € Conj(M). Then

(i) The map 0 v—— 0//p is an isomorphism of the interval
[¢,1] in Conj(M) onto Conj(M//yp).

()  8//¢ is special in Conj(M/]p) iff Oe = we. Moreover, the

map in (i) s an isomorphism of the interval [p, 9] in Conj(M)
onto Conj (M/ /).
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(iii) The map 0+ 0° is an isomorphism of [p,p] in Conj(M)
onto [gas,?p"s] in Coan(M).

(iv) If ¢ is not special, the map 0 v ¢° is an isomorphism
[o.1] 2 [6°,1°).

(v) If N is a subpolygroup of M, Coan(N)
sublattice of Conj (M).

104

(0,161,030, @

Proof. (i) is a tedious but straightforward argument.

(ii). 0//¢ is special iff (x)(60//@)(pe) = ¢x = e iff x0et
= xpe iff 0e C we. But e C fe always holds since ¢ C 0.

Since 0 € [p,p] iff @e C fe, the restriction of the map in (i) gives
the desired isomorphism.

(iii). If ¢ is special, 0°= ¢ for #in [p,g] C Conj (M). Assume

e + {e}. Since 6+ & is a lattice homomorphism it suffices to
show the map is (1) one—one and (2) onto. For (1) suppose 0 #

0o in [@,0]. Since fie = pe = Ooe, there exist x ¢ pe such that
O1x # Opx. By 4.4(i), Oix # 0;:( so the images are distinct and
thus (1) holds. For (2) assume @ isin [¢°,@°]. Define ot =
{ge;fx;.} where 0= {g(ge) i}, Since (67)° = 0 it
suffices to show that 01 isa conjugacy. If x0+y, it is clear that

x""lﬁh*"y"1 since (<,oe)m1 = pe and (t?xi)m_1 = 0(x;1) for all i;
thus, condition (2) of 1.1(i) holds. To verify (1) in 1.1(i) we need

to show (0+x)(€+y) is a union of 0 —blocks. First we show

(pe)(6x,) = Ox;. This holds because 62 ¢® and Ox; # ye implies
that 6x, is a union of p-blocks O, = (yx;)U..U(¢x{)V... and
(tpe)(gox;) = ¢x{ for each component ¢x{. It remains to see that

(0xi)(0xj) is a union of 0" —blocks. For this it suffices to show
*
(we) ¢ (ﬂxi)(ﬁxj) iff ee (ﬂxi)(ﬂxj).
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*
For (=) choose x € (¢e) . Then x € X{ x4 for some x{0x,

x40x;. Since fx = ¢’x C (¢"x{)(¢"xg) = (wx{)(px}), epx, and ¢
is a conjugacy, e € (gox{)(gaxi) C (0xi)(0xj). The implication (&)
is similar, so e Conj(M) which completes the proof of (iii).

(iv) holds by an argument similar to (iii).

(v) follows from 4.3 and the observation that ON[go] is special iff
@ is special. O

In 4.7(iv) if ¢ € Conjs(M), the homomorphism is, in general,
not one—one.

5. Epilogue

In sections 3 and 4 (e.g., 3.4, 3.5, and 4.2) several techniques
were given for creating conjugacy relations on a polygroup. Also,
several isomorphisms (e.g., 4.3, 4.6, 4.7) were established which
allow for the study of parts of Conj(M). The techniques described
in the previous sections play a fundamental role in the proofs of the
following two results. The proofs are extremely long and are
omitted.

THEOREM 5.1. For a group G, Conj(G) is a modular lattice if and
only if G I, for n=1,284,5"7 Moreover, Coan(G) is a
modular lattice but Conj(G) is not modular if and only if G v
”2XH2.

THEOREM 5.2. There ezist a lattice formula that defines 15 in
Conj(@) for all groups G mnot isomorphic to Ls. On the other
hand, G 14 if and only if Conj(@) has the form
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We conclude with an application of 5.2 which uses several of the
results developed in sections 3 and 4.

THEOREM 5.3. If G and G’ are finite Abelian groups and
Conj(G) v Conj(G’), then Con(G) ¥ Con(G’), i.e., the subgroup
lattices of G and G’ are isomorphic.

Proof. The proof breaks into two cases: (1) G is not isomorphic to
Iox for any k, and (2) G & I,k for some k.

Assume (1) and let f:Conj(G) — Conj(G’) be an isomorphism
onto Conj(G’). We want to show that the restriction of f to the
sublattice = Con(G) is an isomorphism onto Con(G’). By
induction on the height of ¢ in Con(G), we prove that
f(0)€Con(G’) and that f is an isomorphism of [f},1] onto
[fOH,]l]. This is clear for ng} which is the smallest element of
both lattices. If G is simple, 1is V—irreducible and Con(G) =
{6,1} by 3.5(ii). Therefore G’ is simple and clearly fI = 1.

Assume G is not simple. Since G is not isomorphic to H4, 15 is
definable in Conj(G) and also in Conj(G’) by 5.2. Thus f(13)

= ]l(s},. Therefore, by 3.4(ii) f carries each atom 6 in Con(G)
to an atom f(fy) in Con(G’). Thus the conclusion is true for all
O of height 1in Con(G). Suppose the result is true for all O
of height < n and consider elements of height n+1. Since such an
element covers a 0H of height n, we may consider HK as an atom
in the lattice [0p,1] which is isomorphic by f to [ff},1] €
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Conj(G’). If G/H is not isomorphic to I, then 1% is definable
in [0g,1] 2 Conj(G/H), by 4.7(i), and also in [{6}7,1]. In this case,
by 3.4(ii) 0 is mapped to a corresponding element in Con(G').
Now, suppose G/H & I 4 The nontrivial proper subgroup of ﬂ4
corresponds to a unique element fp in Con(G) that covers O
We claim there exist a subgroup L of G incomparable to K.
(For if not, every subgroup of G is comparable with K which
implies G o sz for some k by the Fundamental Theorem of
Finite Abelian Groups.) Now, L ¢ H because L ¢ K; so
HVL > K since K is the only cover of H in the subgroup lattice
of G. By the modular law HV(LnK) = Kn(HVL) = K because K
> H. Also, H ¢ L because only K and G extend H; so KnL # H
and 0KnL has height < n. Since f is a lattice isomorphism,
f(6y) = f(0)Vi(0} ) Dbelongs to Con(G’) because f(6) and
f(ﬂLnK) belong by the induction assumption. Moreover, since
G/H v I, { restricted to [f,1] is an isomorphism. This
completes the proof of (1).

(2) is proved by a straight forward inductionon £ o

Figure 1, Conj(S3)
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Figure 2, Conj(lls)
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