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Perfect extensions of regular double Stone algebras

S. D. COMER*

Dedicated to the memory of Alan Day

Abstract. ITn 1951 Jonsson and Tarski showed that every Boolean algebra with operators could be
embedded in a perfect (or canonical) extension. We obtain a similar result for regular double Stone
algebras with operators. As a corollary we obtain another proof that every regular double Stone algebra
can be represented as an algebra of rough subsets of an approximation space.

1. Introduction

A double Stone algebra A={A, +, ,* 1,0,1> is an algebra of type
{2,2,1,1,0,0) such that

(i) <4, +,-,0,1) is a bounded distributive lattice;
(i) * is a pseudocomplement (i.e., @ x =0 iff x <a*) satisfying the Stone
identity x* 4+ x** =1;
(iii) * is a dual pseudocomplement (i.e., ¢ +x =1 iff x = a*) satistying the
dual Stone identity x* - x*t* =0.

A double Stone algebra A is called regular if x* = y* and x* =p* imply x = .

For standard facts about double Stone algebras we refer the reader to Gritzer
[5] or Balbes and Dwinger [l1]. For a double Stone algebra A we let
C(A) ={a*:a e A} denote the center of A. C(A) is a Boolean algebra that is a
subalgebra of A and can be described in various ways:

C(A)={aed:a=a**}={a"1aecd}

={aed:a*=a"}={aed:a=a*"}
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Also, let D(A) ={aeAd:a*=0}, the filter of dense clements of A, and
F=D(A)"*={a*" :a € D(A)} be the corresponding filter on C(A). We denote
the complement of an element x in a Boolean algebra by x’ to distinguish it from
the two pseudocomplements.

In the paper [8] by T. Katrindk it is shown that every regular double Stone
algebra A is uniquely determined by the pair (C(A), F). In fact, if C is a Boolean
algebra and F is a filter on C, then

A={abyeC>:a=bb+a eF}

has the structure of a regular double Stone algebra denoted by A =(C, F). To see
this, regard A as a bounded sublattice of C? and define the pseudocomplements for
x =(a,b) e d by

x*={(a',a’) and x*=(,b").

Moreover, every A can be represented in this way by the map that sends x € 4 to
the pair (x**, x**). This representation is used throughout the paper.

Now let S, S;, and S; denote the two, three and four element chains considered
as double Stone algebras. Katrifiak [9] showed that these are the only non-trivial
subdirectly irreducible double Stone algebras. S, generates the subvariety of regular
algebras which is the variety of double Stone algebras that covers the variety of
Boolean algebras (cf., [14]).

In 1951 Jonsson and Tarski showed that every Boolean algebra (BA) could be
embedded in a complete atomic BA in such a way that additive operations could be
extended and certain identities between the operations were preserved. In this paper
we extend part of the Jonsson—Tarski theory of perfect (canonical) extensions to
the variety of regular double Stone algebras. The basic idea for constructing the
perfect extension of a Boolean algebra A is to regard A as the algebra of all clopen
subsets of a Boolean space X and to let the perfect extension of A be the power set
P(X). Observe that this construction can be viewed in a slightly different way.
Namely, the algebra of all clopen subset of X can be viewed as the algebra of
continuous sections of the trivial sheaf over X and P(X) as the set of all functions
from X into 2. The idea for obtaining the perfect extension A” of a regular double
Stone algebra A is to represent A as the algebra of continuous sections of a sheaf
(X, S) over a Boolean space X (cf., [2]) and take A“ as the direct product of the
resulting stalks [, . x S..

Jonsson and Tarski algebraically characterized the relationship between a
Boolean algebra A and its perfect extension A°. We do the same for regular double
Stone algebras, but will use the representation of Katrifidk [8] to avoid references
to sheaves.
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The relationship between A and its perfect extension A’ will be described in
Section 2 and the extension of operators will be treated in Section 3. In Section 4
we look at the relationship between complete atomic regular double Stone algebras
and the algebra of all rough subsets of an approximation space.

The author wishes to thank the referee for a number of useful comments and for
suggesting the use of the Katrifidk representation.

2. Perfect extensions

Throughout the paper A and B will denote regular double Stone algebras. Let
J(A) denote the set of join irreducible elements of A and let A7(A) denote the set
of atoms of A.

DEFINITION 2.1. For regular double Stone algebras A and B, B is a perfect
extension of A (also called a canonical extension) if
(i) A is a subalgebra of B and B is complete and atomic;
(i) (compact) whenever x; € A (all i e I) and ) ;. x, =1, there exist a finite
subset J of I such that Y, ,x; = 1.
(iii) (separation) whenever u, v € J(B) with v £u, there exist a € 4 with a > u
and v £ a.

The conditions above reduce to those of Jonsson and Tarski [7] when A and B
are BA’s. We begin our development with a few preliminary results about the
structure of complete atomic regular double Stone algebras.

LEMMA 2.2. Suppose B=(C,F) is a regular double Stone algebra. Then
x =(a, b) € B is an atom of B if, and only if.

(i) @ € A1(C) and b € {0, a}, and

(i) b=0iff a’ e F.

Moreover, B is atomic if and only if C is atomic.

Proof. Assume that x = (a, b) € B is an atom of B. If a ¢ At(C), there exist
0<a,<aand y =(ay,a, b) e B. Thus, y <x which contradicts x € 41(B; hence
a € A1(C). Since @ > b, we have b € {0, a} which shows (i) holds. (ii) holds since
x =(a,0) € B is equivalent to a’ € F. The rest of the proof is straightforward. [J

LEMMA 2.3. Suppose B=(C, F) is a regular double Stone algebra. Then B is
complete if, and only if, C is complete and F is a principal filter on S. Moreover, if
B is complete and x; = (a;, b;) € B for all i € I, then the following hold:
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(i) ZI X; = (21 d;, Z/ b)),

(i1) Hl X = (Hiai: nl b,

(iﬁ) (Z[xi)* = Hleka

(iv) (IL X)) = Zl X,:Jr s

(v) (lei)+ = n] xi,

vi) (J]rx)* =2, xF.

Proof. Suppose B is complete. Since the map x — x** is a closure operator on
B and C >~ C(B), C is complete (cf., Szasz [13], p. 69). Now, we show that F is
principal. Let (¢, d) =) {(a,0) :a’ € F} whose join exist by completeness. Then
d+c¢ eF. Since a <c for all a’ € F, it follows that ¢’ is a lower bound of F in C.
Assume (o the contrary that F is not a principal filter. Then there exist e € F with
e <d + ¢'. Note that d 5 0 since ¢’ is a lower bound of F. Considerd-e. If d e =d
(i.e., d < e), then since ¢’ < e, we obtain d + ¢’ < e which is a contradiction. Thus,
d- e <d. Ttis easy to verify that (¢, d e) € B. Thus,

(a,0) <(c,d-e) <(c,d)

for all ¢’ € F which contradicts the choice of (¢, d). Thus, F is principal; say
F=[f). Note that (/”,0) > (a, 0) for all «’e F. Thus, (¢, d) <(f’, 0) which gives
d=0and ¢ =/". To prove (i) use De Morgan’s Law, the infinite distributivity in C,
and a; + b, e F=[f) for all i € I to obtain

<Zai>/+2bi:ﬂa;+2bi=ﬂ<a;+Zbi>z]—[(a;+bi) er

Thus, (Y a,, Y. b;) € B and is clearly the least upper bound of {x; : i e I}. The proof
of (ii) is similar. Statements (iii)-(vi) are routine as well as the converse. ]

COROLLARY 24. If B=(C, F) is a complete atomic regular double Stone
algebra, then B is completely distributive.

Proof. Immediate from 2.3(i), 2.3(ii) and the fact C is completely distributive,
cf., Gratzer [5], p. 116. O

Part (i) of the lemma below was inspired by Katriiak’s characterization of the
subdirectly irreducible double Stone algebras [9]. Parts (ii) and (iii) characterize the
Jjoin irreducible elements.

LEMMA 2.5. Suppose B = (C, F) is an atomic regular double Stone algebra.
(i) If x € At(C(B)), then the relativized algebra B, = (x] is isomorphic to S, or
Sa;
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(i1) If v € J(B), then either v € At(B) or v = b** for some b € A{(B);
(ii1) If v € AH(B), then v, v** ¢ J(B).

Proof. (1) follows easily from Lemma 2.2.

(ii) Suppose v ¢ A7(B). Then there exist b € At(B), b <v. Then b** € A1(C(B))
and v =5b** v+ b* v, Since v eJ(B) and b** - v #0,v <b** By (i), (b**] is
isomorphic to S, and b < v so v = b**,

(iii} is obvious from (1). J

LEMMA 2.6. Suppose B =(C, F) is a regular double Stone algebra. Then B is
complete and atomic if, and only if, B= 1], . x B, where X = At(C(B)) and B, is the
algebra obtained by relativizing B to x € X. Moreover, for each x, B, =S, or B, =S,
and B, =S, iff xe{yeX:y eF}.

Proof. Define the map ¢ on B into the product for each » € B and x € A1(C(B))
by

Pp(x) =x " b.

To show ¢ is one-one suppose a # b in B. By regularity a* #b* or a™ # b+,
Choose an appropriate atom of C(B) to distinguish ¢, from ¢,. The remaining
properties which verify that ¢ is the desired isomorphism are straightforward. The
last statement follows from Lemmas 2.2 and 2.5. O

The following result gives information about the structure of perfect extensions.

LEMMA 2.7. Suppose B =(C,, F|) a perfect extension of A =(C, F). Then

(1) whenever u, v € J(B) and u - v =0 (in particular, if u and v are distinct atoms
of C(B)), there exist a € C(A) with a >u and a - v =0,

(i) C, is a perfect extension of C and Fy=[f) where f=]]|F (in C,);

(iii) whenever x; € A (foriel), x € A, and ) ., x; > x, there exist a finite subset
J of I such that ) ., x; > X;

(iv) whenever x,€ A (for iel),x € A, and ||,.;x, <x, there exist a finite
subset J of I such that [],.,x; < x;

(v) if ¢ :B=|].cx B, as in Lemma 2.6, then ¢ represents A as a subdirect
product of {B, :x € X>.

Proof. (1) If u,v e J(B) and u - v =0, then u** - p** =0. By 2.5(i1) and 2.5(iii)
we may assume u, v € A1(C(B)). By 2.1(iii) there exist « € 4 with u <a and v £a.
Then a** e C(A) and u <a**. Also v £a** which implies v-a*™* =0 since v €
At(C(B)).




Vol. 34, 1995 Perfect extensions of regular double Stone algebras 101

(ii) To show C, is a perfect extension of C it suffices to check the Jonsson—
Tarski conditions for BA’s. These follow using 2.2, 2.3 and (i). By 2.3, F, =[g) =2 F.
Then /=[] F (in C,) >g. Suppose f>g. Then there exist a € A7(C) such that
a<fand a-g=0. Set v =(a, 0). Since @' > g ¢ F;,v € B. Note v** = (a, a). Since
v** £ v, separation implies there exist x = (¢, d) € A4 such that x > v and v¥* £x,
ie, a<cand a £d. If d=0, then ¢’ € F; thus ¢ <f” from which we obtain
a < ¢ <f’ contradicting the choice of a. Hence, d #0. Therefore a-d =0, ic.,
d < a'. This, together with a’ > ¢’ and d + ¢’ = f (since d + ¢’ € F) yield ¢’ > f which
contradicts f € a’. Thus, /=g as desired.

(i) and (iv) follow from (ii) and Lemma 2.3.

(v) Tt suffices to assume B, is a 3 element chain and x = b** > b for some
b e Al(B). By 2.5(ii), b, b** € J(B) and b** £b; so by separation, 2.1(iii), there
exist a € A,a>b and b** £a. Thus, b <a b** <b** so a-b**=b. Thus, the
map y +— y - yb** is onto B, as desired. [

In preparation for the main result of this section — the existence and uniqueness
of perfect extensions — we describe a subdirect decomposition of a regular double
Stone algebra that is equivalent to its natural sheaf representation ([2]).

LEMMA 2.8. Suppose B=(C, F) is a regular double Stone algebra. Let X
denote the set of all ultrafilters on C and Y ={y € X : y 2 F}. For each x € X define
6, on A? by

(a, D)0 (c,d) iff (a,cex ora,ceB\x) and (b,dex orb,de B\x).

Then
(1) 0, is a congruence relation on A and () {0, :x e X} =1d,;
(i) A,=A4/0, =S, if xeYand A, =S, if xeY,
(iil) the map ¢ : A—]]cc x Ax defined, for all a € A and x € X, by

(@), =all,
represents A as a subdirect product of (A, :x € X).

The proof is straightforward. For information about congruence relations on
double Stone algebras see [10].

The following result shows that perfect extensions exist and are unique up to
isomorphism.

THEOREM 2.9. (i) If A is a regular double Stone algebra, then there exist a
perfect extension A° of A.
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(i) If B is a perfect extension of A=(C,F), then B[], .x A, where
(A, :x € X) is the subdirect representation of A given in Lemma 2.8.

Proof. (i) Set A° = (C,, F,) where C, is a perfect extension of C and F, =[f)
where f=]] F (in C,). Then A’ is complete and atomic (Lemmas 2.2, 2.3) and
contains A as a subalgebra. Because C, is a perfect extension of C it is easy to verify
2.1(i1) that A is compact in A°. To prove the separation condition, 2.1(ii1), take
4, 7 € J(A%) with v £ 4. By Lemmas 2.2 and 2.5 five cases can occur when u, v are
distinct atoms of C, : (i) @ = (u, #) and v = (v, v), (i) 4 = (1, 0) and v = (v, 0), (iii)
= w0 and 0 ={(v,v), (iv) u=(u,u) and v =(v,0), and (v) &#=(u,0) and
o = (u, u). Since C, is a perfect extension of C there exist a € C withu <aand v £a
in B,. Setting @ =(a, a) we have # <a and # £a in cases (i)—(iv). In case (v),
u' > f. First suppose u' =f = [ [ F. Then, since u € At(C,),u’ € F and a@ = # has the
required property. Now suppose u’ > f =[] F. Then there exist a’ € F such that
u'>a >f. Thus, d =(a,0) € A, it <a, and v £ a as desired.

(i1) Suppose B = (C,, F;) is a perfect extension of A = (C, F). Then, by Lemma
2.7(ii), C, is a perfect extension of C and F < F,=[f) where f=]]F. Thus,
|[At(B)]| =|A41(C,)| = |X| where X is the set of all ultrafilters of C by Lemma 2.2 and
the Jonsson—Tarski construction. By Lemma 2.6, B~ nxem(c,) B, where B, =S,
if x'%f and B, =S, if x'>f Since C, is a perfect extension of C, for each
y e AHCy), [¥) nC =7 is an ultrafilter on C. Let Y ={ye X :y 2 F}. Note that
y' = fiff y € Y. The map y + y gives a bijection between 47(C,) and X that restricts
to a bijection between {y € A1(C,) : ' =f} and Y. Bt Lemma 2.8, B, ~ A; for all
x € At(C,); thus,

B[] A,

yeX

where (A, :y € X is the representation of A given in Lemma 2.8. O

3. Extending operators

In this section the Extension Theorem of Jonsson and Tarski ([7], Section 2) is
extended from Boolean algebras to regular double Stone algebras. The proof is
similar to the one for BAs except for a technical complication due to the use of join
irreducible elements in A” in place of atoms.

Let A be a regular double Stone algebra and A’ its perfect extension from
Theorem 2.9. Following Jonsson and Tarski [7] we say that f: A" — A is an operator
if it is additive in each argument and that f is normal if its value is 0 whenever one
of its arguments is 0. This notion is called a join-hemimorphism in Goldblatt [4]. A
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regular double Stone algebra with operators is an algebra (A, f;),., where A is a
regular double Stone algebra and all operations f; are operators on A. If all the f;s
are normal, we say (A, f;>,.; is normal.

An element x € A° is called closed if x =[] {y € A :y >x}. Similarly, x is open
if x=Y {yed:y<x} Let K denote the set of all closed clements of A”.
Operations f on A are extended to A’ in the following well-known manner.

DEFINITION 3.1. For an n-ary operation f on A the canonical extension /7 is
defined for all x € (4°)”" by

=y [T fo).

xzaekn asbeA”

The following are straightforward, cf., 2.2 and 2.3 of [7].

LEMMA 3.2. For an n-ary operation f on A and xeK" [f(x)=
nxgbeA"f(b)'

LEMMA 3.3. If f is a monotone function from A" to A (in particular, if f is
additive), then f°(x) =f(x) for all x € A™.

Below, we establish an alternative description for /.

DEFINITION 3.4. For an n-ary operation f on A define g for all x € (A”)” by

gx)y= 3 [

x=ueJA%)"

Observe that, using the separation condition 2.1(iii), a join irreducible is closed
so that, in 3.4, f°(u) is computed as in 3.2. Using Lemma 2.5 we see that if « is join
irreducible and u <Y, x; in a complete atomic regular double Stone algebra, then
u < x, for some i € I. From this observation it is easy to prove the following (cf.,
[71, 1.7).

LEMMA 3.5. g is completely additive.
The following is the main technical result of this section.

LEMMA 3.6. If f is additive (in each argument) on A" to A, then f°(x) = g(x) for
all x € A. From 3.5 it follows that [° is completely additive.
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Proof. Since each join irreducible element is closed, clearly

gxy=" ) fw< Y =W

x>ueJ(A%)" x>ue K9

It remains to show

f(y)y<g(y for all y € K. (n

For, if (1) holds, then, for x € (4°)", by 3.1, 3.2 and (1)

=Y f(m= Y g <gx.

x>yeK”n x>pyeKn

Now, consider y € K" andv suppose g(y) <f°(y). Then there exist u € J(A"),
u<f(y)and u £g(y). Let K, ={a:y = a e J(A)"}.

Case 1. u € At(A°).
Since u £ g(¥) =) .k, / (@), for all a € Ky, u £1°(a) = [ [4<.c 4nf(z). Thus
for every a € K|, there is z, with a <z, e A" and u - f(z,) = 0. (2)

We want to construct for a € K, elements ¢,,(a) € A for j <n, p <n such that

yi<d,la) ifaek, and j<p<n, (3)
@ <¢,(a) ifaek, and p<j<n; (4)
u ‘fv((/)Op(a)a (i)lp(a)a ot qsnflp(a)) =0 lfp <n and ae Kl' (5)

The sequences ¢, will be constructed by recursion. For p =0, let ¢,4(a) = (z,,);
for all j < n and a € K. Condition (3) is vacuous and (4), (5) follow from (2). Now,
assume p <n and ¢,,(a) is defined for all j <n, a € K, and condition (3), (4), and

(5) hold for this p. For a € K| let
Li={beK,:b=aforall j<nandj#p}.

For every ¢ € J(A”) with ¢ <y, there is b € L with b, = ¢. Hence, by (4), applied to
pand b,c=b,<¢,(b). Since y, =) {ccJ(A) :c<y,},

ypg Z (/Spp(b)'

belLy
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Since y, is closed and ¢,,(h) is open, an easy extension of 2.7(iii) implies there exist
a finite M < L, such that y, <>, 4 ¢,,(b). Now define

P

Dps1(@) = 3. () and (6)
Gpri@=T] ¢,(b)  forallj<nj#p. (N
beM

We must verify (3), (4), and (5) with p + 1 in place of p. Condition (3) holds by (6),
the induction hypothesis, and (7); (4) follows from (7) and the induction hypothe-
sis. To see (5) use (6), the assumption that f is additive, and (7) to obtain

u ‘f(¢0p+](a)> et Z (/)pp(b)ﬂ . )

:IZMM 'if(¢0p+1(a)’ s (/)pp(b)a e ¢)n»1p+1(a))
< bZM u 'f(()()p(b% ] (z)pp(b)> cees d)n— lp(b)) =0.

This completes the induction. Now, for a € K, define z € 4" by

z; = ¢;,(a)

for all j <n. From (3) it follows that y <z and from (5), 0=uwu"f(z). This
contradicts the choice of u: 0 #u < f°(y) while u- f(y) <u-f(z) =0.

Case 2. u € J(A)\At(A%).

From Lemma 2.5 it follows that u € 4¢(C(A”)). As in Case 1, for every a € K|,
u£f°@)=[liz.canf(2). Thus,

wkf @ = ] S

a<ze A"
Since u € At{(C(A”)) there exist u, with
a<u,eA” and u-f(u,)"t =0. (8)

We proceed as in Case 1 except that we modify condition (5) slightly. We construct
for a € K, elements ¢,,(a) € A4 for all j <n, p <n such that (3), (4), and

P
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u.f(d)O]J(a))"’9(/)n—117(a))++:0 lfp -—<~n and QEKI' (9)

The sequence of ¢,,s is constructed as in Case 1 using the u,s in place of the z,s
to start the induction. In the induction step ¢,,, (@) is defined as in (6) and (7).
The elements will clearly satisty conditions (3) and (4) as before. The proof of (9)
is similar to that in Case 1 again using the assumption that fis additive and the dual
Stone property (u +v) " =u*t + 07", Namely,

u ..f(qb()p»l-](a)a L] Z (/bpp(b)b coee )++

= b-ZMM ‘f'((/)()erl(a)a s d),,,,(b), e, (]5"_1]]+1(a))++
S/ZMH A G () N () R () R O

This completes the induction. Now, for a € K, define z € 4" by z; = ¢,(a) for all
j <n. From (3) it follows that y <z and from (9), O =u-f(z)**.

These properties produce the desired contradiction since u e AH(C(A9)),
u<f(x), and y <z gives u <f(y)"" <f(z)*" contrary to u-f(z)*" =0. Since
both Case 1 and Case 2 produce contradictions, f°(y) <g(y); so (1) holds as
desired. O

From Lemmas 3.3 and 3.6,

THEOREM 3.7. Every n-ary operator f on a regular double Stone algebra A has
a completely additive extension f° to A°. f° is normal if f is.

As in the case of Boolean algebras (cf., 2.5 of [7]) it is easy to show that f7 is
the largest possible extension of f to a completely additive function on A’

LEMMA 3.8. If f is an operator on A" and g is a completely additive function
Jrom (A" to A such that g(x) < f(x) for all x € A", then g <f°.

The following result combines 2.9 and 3.7.

THEOREM 3.9 (The Extension Theorem). For every regular double Stone
algebra with operators A there exist a complete, completely distributive atomic perfect
extension A° of A with completely additive operators. Moreover, if A is normal, then
so is A°.
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4. Connections with rough sets

An aspect of the theory of perfect extensions [7] that lends itself to the
construction of useful examples is the connection between perfect extensions of
Boolean algebras with operators and complex algebras of relational systems. In this
section we establish a connection between the perfect extension in Section 2 and
“complex” algebras of rough sets of an approximation space.

Rough sets were introduced by Pawlak [11]. We follow the lattice theoretic
approach due to Iwinski [6]. A pair U= U, 0) that consists of an equivalence
relation 0 on a nonempty set U is called an approximation space. Every X < U has
a lower approximation X and an upper approximation X defined by

X={){0x:0x=X} and
X=]){0x:xeX}

A rough subset of U is a pair (X, X) where X < U. The collection of all rough
subsets of U is denoted by Shp(U) and the algebra of all rough subset of U is
PL(U) = {Sbr(U), v, A, * 7,0,1> where 0=(, &), 1 =(U, U), v and A are
defined coordinatewise, (X, X)* = (U\X, U\X), and (X, X)* = (U\X, U\X). It was
shown in [12] that Px(U) is a Stone algebra.

The characterization of complete atomic regular double Stone algebras in
Theorem 4.1 was given in [3], but the proof here is more intrinsic.

THEOREM 4.1. If B is a complete atomic regular double Stone algebra, then
B = PL(U) for some approximation space U.

Proof. Let U = J(B) and define 8, for p,q € U by
phq iff p** = g**.

Clearly U=<U,0) is an approximation space. Define j:B—Sh(U) by
Jjb) ={peJ(B):p <b} for all b € B. Observe that

whenever b € C(B), qOp €j(b) = q €j(b).

For b e B define ¢b) =(j(b™T),j(b**)). We want to show that ¢(b) gives the
rough set determined by j(b). This is done in (10) and (11) below.

j(b**)y=j(b)  for b e B. (10)
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Using 2.3, b** =Y {p** :pej(b)} so jb**) =) {6p:p €j(b)} =j(h) which
establishes (10).

JFT) =j(b) for b € B. (1
For b € B, we split j(b) into two parts J and K so that b = J+) K where

peJ <« p**ecjb) and K =/(b)\J. Note that p e K <> p ej(b) and p** ¢ j(b).
Also,

Y J=Y {p**:peK}eC(B) and (12)

b =Y J+ (Y K)* and (3J) (Y K)** =0. (13)
Now,

J) =J. (14)

To see this first observe j(b) =) {0p:0p =j(b)}=2J since Op =J = j(b)
whenever p € J. On the other hand, if p € K, Op & j(b) so p &j(b).

J@orT) =J. (15)

Suppose (D, K)** #0. Then there is x € 4¢(C(B)) such that x < (). K)**. But
x =g** for some geJ(B) and ¢ <g**<() K)"" <) K<b. Hence qg**eJ
which contradicts (13). Thus, (), K)** =0 and, using (12), 7" =(> J)*+ +
(3. K)*™* =)"J. Hence (15) follows. Condition (11) follows from (14) and (15).

From (10) and (11) above we see that ¢(b) =(j(b*™), j(b**)) € Shx(U). The
regularity axiom for B implies that ¢ is one-one. To see that ¢ is onto Sb,(U)
suppose S & T < J(B) where S, T" are #-invariant. Define

b=) {p**:peS}+> {p:p<p**eT\S}

Then b** =3 Tand b+ =) Sso ¢b) = (S, T) as desired.
It is routine to show that ¢ preserves + and .. Consider *:

Pb*) = (JO*T), j(b**¥)) = (j(b¥),j(b*)) = ¢(b)*

since b* is the complement of b** in C(B). Similarly, ¢(b™) = ¢(b)". This
completes the proof that ¢ is the desired isomorphism. O
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Theorem 2.9(i) and 4.1 yield the representation result mentioned.

COROLLARY 4.2, Every regular double Stone algebra is isomorphic to an
algebra of rough subsets of an approximation space.
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