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Abstract: It is the purpose of this paper to provide examples of hyperstructures
associated with the study of symmetry in physics and chemistry. In applications
the symmetries of an object are typically considered as a group; s0 most of the
examples presented are connected to constructions from group theory. In
particular, we show that a natural hypergroup is associated with every character
algebra. This unifies several classical hypergroup constructions. We also show
how certain edge colorings of graphs give raise to hypergroups with special
properties.
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1. Introduction. .
The study of symmetry is closely related to the theory of groups and its
extensions. Symmetry groups have been widely applied in chemistry [12],
crystallography [17], and solid-state physics [1]. In these areas distinctions are
usually made between symmetric objects (planes, axes, etc) and symmetric
operations (reflections, rotations, etc) which leave an object invariant. In this
paper symmetry will refer to symmetric operations. Many applications of groups
involving symmetries' have involved coset decompositions, double coset
decompositions, decompositions into conjugacy classes, and group.characters.
Below we introduce a hypergroup structure on each of these “spaces”. This
paper is intended to be a source of ideas about constructions to show a non-
specialist that hypergroups are fairly naturally associated with objects with which

they have familiarity.

Section 3 contains a speciﬁc'{"result. Namely, we show that a C-algebra
in the sense of Y. Kawada [18] gives raise to a special hypergroup called a quasi-
cannonical hypergroup by Bonansinga and Corsini [4] and a polygroup in [6].

A polygroup is a system (M, »,€) where eeM, »assigns a nonempty subset
of M to each pair of elements in M, and the following axioms hold for all x, y, z
eM:
(1)  for each x there exists a unique ¥1eM such that eexex and eexex,
(2) esx={x}=xe,
‘(3)  xeyez implies ye xez' and z€ ylex,

@) @y)z=x0r2)

Sections 4 and 5 deal with connections between hypergroups and
colorings of designs or graphs. In Section 4 we describe the principal coloring
associated with a subgroup of a group and in Section 5 we look at polygroups
derived from an edge coloring of a complete graph that satisfies a regularity

condition.
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- Throughout, we illustrate constructions using the dihedral group D,. This
group is generated by a counter-clockwise rotation » of 90° and a horizontal
reflection 4. The group consists of the following 8 symmetries:

(1=r°r, r*=s r’=t b hr=d,hr 2=y, hri=f}.

Figure 1 below shows the actions of 7, h, v, d, and .

v
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Figure 1: D,

2. Classical hypergroup constructions. )

Coset Hypergroups. For a group G and a subgroup H let G/H denote the
collection of all right cosets Hg = {hg: heH } for gin G. The system (G/H,,H)
is a hypergroup where :

Hg,) *Hg,) ={Hg -geg Hg,}.

The system G/H is called a D-hypergroup and is the primary example of a
cogroup. These systems have been studied by Eaton [15], Krasner [19], and
Utumi [25]. Recently Y. Sureau [24] has characterized all cogroups by nested
triples of permutation groups.
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As an example of the construction consider the subgroup H={1, h} of
the group D,. The right coset decomposition of D, with respect to H is

{1, Ry J{r, dyuis, viult, f} .

Iftwo cosets are multiplied elementwise the result may not be a single coset. .For
example, consider the product (H1)(Hr) inD,. This part of the group table for D,

is displayed below.
D, ‘ r d
t -1 v
f : h| s

We see that (Hf)(Hr) = Hu Hs. Thus, inthe operation table for D,/H the product
- HpeHr is recorded as the two elements H, Hs. Using 1, 7, s, and f as coset
representatives, the complete operation table for the cogroup D,/H becomes

H Hr Hs Ht
H H Hr Hs Ht
Hr| Hr, Ht | Hs,H | Ht, Hr | H, Hs
Hs| Hs Ht H Hr
Ht| Ht Hr | H Hs | H,Ht | H, H

In Section 4 we show how cogroups such as the one above derived from
coset decompositions represent an algebra of colors associated with the

subgroup.

~ Double coset algebras. The unit element of a cogroup is normally a one-sided
Scalar, not a 2-sided scalar. This is overcome by looking at double cosets. A
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double coset HgH of a subgroup H of a group G is the collection of all distinct
elements h,gh, where iy and i, range over H. The double cosets of H give a
decomposition of G. Let G//H denote the collection of all double cosets of G
with respect to H. A double coset algebra is a hypergroup (G/H, »,H) where

(Hg H) «Hg,H) = { Hg,hg,H he H}.

The system G/H is a example of a polygroup .or quasi-cannonical hypergroup.

If H = {1, h} is the subgroup of D, considered earlier, the double coset

decomposition is :
(1, Mo {r,d, 1, fuls, v} -

As with the elementwise product of two cosets the elementwise product of
double cosets can also produce Wrnore'than one double coset. Consider the
product (HrH)(HrH). The relevant part of the group table of D, is displayed
below.

Dy |- |rjdlt f
r s th il jv
d vi{ll!lh s
t 1lvi]s |h
f hils |v ]l

We see that (HrH)(HrH) = HUHsH: thus the polygroup product HrHeHrH is the
two elements H, HsH. The full table for the polygroup D/IH is given below.
Notice that the unit element H is 2 scalar element.
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H HrH HsH
H H HrH | HsH

HrH HrH | H, HsH | HrH

HsH | HsH HrH H

Conjugacy class polygroups. In dealing with a symmetry group two symmetric
operations belong to the same class if they represent the same map with respect
to (possibly) different coordinate systems where one coordinate system is
converted into the other by a member of the group (cf, [12]). In the language of
group theory this means elements g, b in a symmetry group G belong to the same
class if there exist a ge G such that a=gbg*, i.e., aand bare conjugate. The
collection of all conjugacy classes of a group G is denoted by G and the system
(G ,{e}) is a polygroup where € is the identity of G and the product AsB of
conjugacy classes 4 and B consists of all conjugacy classes contained in the
elementwise product AB. This hypergroup was recognized by Campaigne (IsH
and by Dietzman ([14]). |

In the case of D, there are 5 conjugacy classes: {1}, {s}, {r.1}, {4/}, and
{h,v}. Letus denote these classes as Cy,..., Cs respectively. Then the polygroup
D, is '

c,lc |G |G C, C,
C |G |G |G Ca Cs
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As a sample of how to calculate the table entries consider C;C;. To determine
this product compute the elementwise product of the conjugacy classes {r,t}{r,}
= {s5,1} =C, u C,. Thus, C;C, consists of the two conjugacy classes C}, C;.

Character polygroups. Closely related to the conjugacy classes of a finite
group are its characters. Let G= {X1 X xk} be the collection of irreducible
characters of a finite group G where ¥, is the trivial character. The character
polygroup Gof G is the system (G, ¢, x;) where the product y; is the set
of irreducible components in the elementwise product ¥;x; . “The system G was
investigated by R. Roth [21] who considered a duality between G and G.

Before calculating D we need to know the 5 irreducible characters of
the dihedral group D,. These are glverr by the following character table.. (Since
characters are constant on conjugacy 7 classes it is usual to list only the conjugacy
classes across the top of the tablé.)

¢, G G G G

Xi: 1 1 1 1
vn: 1 1 -1 1 -1
X 1 1 -1 -1 1
Xo: 1 1 1 -1 -1
Xs: 2 -2 0 0 0

We illustrate the calculation of the polygroup product of two characters
by considering xs*ys . The pointwise product of X, with itself yields the
following (non-irreducible) character:

rsxs: 4 4 0 0 0

This character can be written as a sum of irreducible characters in exactly one
way: ¥sXs=Y;+ X2+ X3+ Xe. Thisisindicated by the entry in the lower right
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hand corner of the polygroup table for Q . In general the polygroup product of
two characters ;¢ X; tells which irreducible characters are in the product x;x; but
not the multiplicity. Using i in place of the character ¥; the polygroup ].54 is

1 12 |3 (4] 5

1 b1 2 |3 4] 5

2 1211 |43 | 3

3 13 (4|1 ]2] 5

414|321 S
s ls s |5 |5 [1234

o

3. A construction from C-algebrasﬂ. 4

'The above constructions of hypergroups based on double cosets, conjugacy
classes, and characters all make use of the fact that when two objects of a type
under consideration (i.e., double cosets, characters, etc) are multiplied in the
natural way, the product is uniquely composed of objects in the set (perhaps with
repetition). The polygroup binary operation is a type of convolution which tells
which objects are in the product but not the multiplicity. We formalize this idea
by showing that every C-algebra gives raise to a polygroup. The\notion of C-
algebra (or character algebra) presented here is due to Y. Kawada [18] (see also
[2]) except that the commutativity requirement has been weakened.

A C-algebra is a classical algebra 4 over the complex numbers together
with a basis X = {x, ~,x,} for4 (asa complex linear space) such that
(C)) A isanalgebraand Xxex; = }: pika for all 7, 7,
k

(C,) A has an identity element e =X, i.e, g’); =90 & T pj](c,,
(C,) every p;jkis a real number,
(C,) there exist a permutation i-i' (fori=0, .., d) such that (i) =i and
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e K
p‘]' —_pj/i”
Q 0

(Cs) B = py = %9, with >0 forall 4,j, and

(Cs) themap x;~ k induces a linear representation of 4.

The condition (C,) implies that the map x, ~ x, extends to an anti-
automorphism of 4. A C-algebra is commutative if p,f = pjf forall 7, j, k. The
lemma below summarizes a few elementary facts.

Lemma. (1) 0'=0,
2 K=

3) & , , .
(4) KDy = KDy = KD,

Proposition. Every C-algebra A with basis X such that the parameters p;f
are all non-negative (the Kreim condition) determines a polygroup Pg(A) =
 (Xo e) where Xpx, = {xk:py.k« +0}and x ' = X, foralli,j.

Proof. Since xex, = Z pif,xk = KX, +- and k>0, it is clear that x,€ x;ox;.
If xexx,, ;;3‘ #0 vjfchich implies j=1' by (C;). Similarly, x, is the only
y such that x,c ysx, , so axiom (1) holds. Axiom (2) follows from the C-
algebra property (C,) and axiom (3) from Lemma (4). For (4) notice that
X, E(xioxj)-xk @p;pv’; # 0 if and only if p,;pvl; # 0 for some v and
similarly, x,€x «(x*x) if and only if p,p,# 0 for some v. The
associative law for Pg(4) follows from the equality Y p,/p.. = )_pupy (2

consequence of (C,) ) and the Krein condition. [

Examples of C-algebras not only include the situations mentioned earlier,
but also the adjacency algebras of association schemes ([2]), S-algebras over
finite groups ([3]), and centralizer algebras of homogeneous coherent
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configurations ([16]). The centralizer algebra of a coherent configuration is
called a cellular algebra in the work of Weisfeiler ([27]) on the graph
isomorphism problem.

4. Color symmetries

In Section 2 we showed how a coset decomposition gave raise to a
cogroup. Coset decompositions are related to the study of color symmetries of
designs and crystals. The original influence for this wasithe work of Shubnikov
[23] on crystallography. The ideas illustrated here follow the treatment given by
Roth [22]. Below we illustrate how a transitive symmetric coloring is associated
with a coset decomposition. Since every transitive symmetric coloring is
equivalent to one constructed this way, by the construction in Section 2, every
transitive symmetric coloring has an associated cogroup. We first define color
symmetries and symmetric colorings, then give their construction.

Suppose G is the group of symmetries of a design that has its regions
colored (with finitely many colors). An element geG is a color symmetry if it
induces a permutation of the set of colors, i.e., whenever g maps a region colored
i onto one colored j, then g must map all regions colored i onto regions colored
j. The color symmetries form a subgroup of the group G of all symmetries of a
design. If every element of G is a color symmetry, the assignment of colors to
the regions of the design is called a symmetric coloring. We are interested in
tramsitive symmetric colorings, i.e., symmetric colorings such that any color can
be mapped into any other by a suitable element of G. ”

In order to set up a correspondence between the regions of a design and
the elements of the symmetric group G of the design a sequence of fundamental
regions of the design is selected. Thisisa collection of disjoint regions such that
for any two regions in the collection there is a unique symmetry in G that maps
one onto the other. Fixing such a sequencé of regions allows a unique element
of the symmetry group G to be assigned to each region. To start the assignment
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select an arbitrary region Q to correspond to the identity element of G. Then, for
each fundamental region R, there is a unique geG which maps €2 onto R. Assign
the group element label “g” to the region R.

The “cross” in Figure 2 illustrates the labeling. This design has 8
fundamental regions and the dihedral group D, as its symmetry group. Selecting
the region labeled Q as the initial region, the other regions correspond to the

- group elements indicated.

f

Figure 2: Region labels

- Ifa design has a transitive symmetric coloring:and H is the stablizer subgroup of
the color of the Q region; there is a one-one correspondence between the right
cosets of H and the set of colors. This leads us to the principal coloring of the
design associated with a subgroup H of finite index in G. Choose a set of colors:
in one-one correspondence with the elements of the cogroup G/H, say, use the
colors 1,...,n where G = H u Hx, U ... U Hx, (with x, = €). Assign the color 7 to
all regidns labeled with elements in the coset Hx, This gives a transitive

symmetric coloring of the design.




As an example, consider the subgroup H = {1,h} of the dihedral group D,
Assign {1,h} = white, {r,d} = red, {s,v} = blue, and {£f} = green. The
symmetric coloring of the design from A is given in Figure 3 below. .

Red

Blue White

Green

Figure 3: Coloring from H

Roth ([22]) shows that every transitive symmetric coloring (with the same
sequence of fundamental regions) is equivalent to one obtained by the process
above. This and much more is treated in [22]. The discussion above shows that
a cogroup can be assigned to every transitive symmetric coloring of a design,
namely, G/H if the coloring corresponds to the subgroup H of G.

\

W R B G
w /4 R B G
R RG BW | GR W, B
B
G

B G /4 R

G, R W,B | RG G W




-61-~

and green respectively, the table above is the cogroup G/H assigned to the
coloring in Figure 3. It is the same cogroup given in Section 2:

5. Color algebras

An association scheme [2] is a partition (or coloring) of the edges of a
complete graph ¥V in a very regular way. As mentioned in Section 3 the
adjacency algebra of the collection of relations of an association scheme is a C-
algebra. The notion of a color scheme ([6], [7], [9]) given below is a
generalization of the idea of an association scheme and will have a natural
polygroup, called a color algebra, associated with it. In the definition below “|”
denotes relation composition.

Suppose C is a set (of colors) with a distinguished ¢lement 0eC. (Think
of 0 as a ‘neutral’ color.) Suppose i : C ~ C with i equal the identity on C and
+#(0)= 0. (Think of i(c) as the color ‘opposite’ to color ¢.) A C-color scheme is
a system <V, {C,:aeC }>suchthat C,c VxVforall acC and
(1) {C, : acC } is a partition of V¥ and C, is the identity on 7,

- (2) Cyay = C,” (the converse of C,) for each aeC,
(3) forevery a, b, ce C, CN(C|Cy) # o implies C, = C,|C,.

Condition (1) means that colors are assigned to all edges of a complete
directed graph and Condition (2) means that for every edge the color assigned to
the edge in the reverse direction:is-uniquely determined by the color on the
original edge. Condition (3) means that whenever some c-colored edge is part
- of a'triangle whose other sides are colored a and b, then every c-colored edge is
part of such a triangle. Association schemes and homogeneous coherent
configurations are examples of color schemes that satisfy the stronger property

3", given below, which says that if one c-colored edge is part of k triangles
whose other edges are colored a and b, then every c-colored edge is a part of k

such triangles.
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(37 forevery a, b, c e Candx, ye V, the number of elements in the set
{zeV:(x,2)eC, and (zy)eC,}isindependent of the edge (x,y) € C..

‘The following 5 point example has two colors (solid and dash) in addition to the
neutral color.

/ . Color 0 = Neutral (points)

N Color 1 = Solid line

Color 2 = Dashed line

Figure 4

The color algebra of a C-color scheme <V, {C, : acC }> is the system
< (C, *, 0> based on the set of colors C with * defined fora, be C by
axb = {ce C:C<cC,|C, }.

It is easy to see that a color algebra is a polygroup-and that the inverse of
a color c is the color i(c). As an example of how the product operation works
we form the color algebra of the undirected graph in Figure 4 above.
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Let O denote the neutral color, 1 the solid line color, and 2 the dotted line color.
To compute 1*1 look at the composition C,|C,. Itis C,u C,. Likewise, we see

-that Cj|C, =C, u G, and G,|C, =C, u C,. With these calculations we see that
the color algebra of the graph in Figure 4 has the operation table above:

For the record there are exactly 10 three element polygroups ([20], [9]).

A polygroup is called chromatic if it is isomorphic to the color algebra
of some color scheme. . Chromatic polygroups have the'nice property.that they
are exactly the polygroups which have a faithful representation as a regular
polygroup of generalized permutations. In other words, a strong form of the
Cayley representation holds for these hypergroups. (See, Comer [9].) For
another representation of hypergroups by generalized permutations, see [26].

We conclude with a few remarks about other applications of polygroups.
* Polygroups are closely related to the study of the theory of relations. In [7] an
alternate to the relational calculus is proposed which is based on an extension of
the notion of polygroup. The polygroupoid notion introduced there is a partial
polygroup-like system with a set of identity elements instead of a single identity.
To define these systems it is convenient to make the inverse operation explicit.
In more detail, a polygroupoid is a partial hyperalgebraic structure <A, 1>
where © is a partial binary hyperoperation on 4, 7 ¢ 4, and "is a unary operation
on 4 such that the following axioms hold for all x, y, z € A: N |

D eyrez=xo(yoz)

(i) xol=x=Jox

(i) theformulas xe y o z, ye x o 7%, and ze y! o x are equivalent.

Condition (i) should be interpreted as saying that if either side is non-empty, then
both sides are non-empty and the sets are equal.

Polygroupoids correspohd to the atom structures of systems of relations.
In a sense polygroupoids (and the special case, polygroups) are a way to




combinatorially classify types of relations. One effort in this direction is

presented in [8]. Another example deals with the association schemes associated
with regular trees by Delsarte ([13]). In [10] the color algebras associated with

regular trees are completely described. In [11] polygroupoids are generalized

further to partial multi-valued loops. These systems arise in the representation

of atom structures of 3-dimensional cylindric algebras.
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